【題目】啟東市政府擬在蝶湖建一個旅游觀光項目,設計方案如下:如圖所示的圓O是圓形湖的邊界,沿線段AB,BC,CD,DA建一個觀景長廊,其中A,B,C,D是觀景長廊的四個出入口且都在圓O上,已知:BC=12百米,AB=8百米,在湖中P處和湖邊D處各建一個觀景亭,且它們關于直線AC對稱,在湖面建一條觀景橋APC.觀景亭的大小、觀景長廊、觀景橋的寬度均忽略不計,設

1)若觀景長廊AD4百米,CD=AB,求由觀景長廊所圍成的四邊形ABCD內的湖面面積;

2)當時,求三角形區(qū)域ADC內的湖面面積的最大值;

3)若CD=8百米且規(guī)劃建亭點P在三角形ABC區(qū)域內(不包括邊界),試判斷四邊形ABCP內湖面面積是否有最大值?若有,求出最大值,并寫出此時的值;若沒有,請說明理由.

【答案】(1)平方百米;(2)平方百米;(3)當=時,四邊形ABCP內的湖面面積取到最大值, 最大值為32平方百米.

【解析】

1)分別在中運用余弦定理,求出,進而可得,根據即可得結果;(2)在中,可得,令,,在中,運用余弦定理可得,由基本不等式可得,由即可得結果;(3)先求出,計算出,進而可得結果.

解:(1)∵四邊形ABCD內接于圓O,∴ABC+ADC=

中,

中,

解得,∴

(平方百米)

答:四邊形ABCD內的湖面面積是平方百米.

2)∵=60,∴在中,=112

,, 中,=112

=112

(當且僅當x=y時,取等號)

(平方百米)

答:三角形區(qū)域ADC內的湖面面積最大值平方百米.

3)∵點P和點D關于直線AC對稱,

APC=ADC,PC=CD=8

由(1)知ABC+ADC=,∴ABC+APC=

ABC=,∴APC=

∵點P區(qū)域內

,∴

∵在中,

中,

解得(舍去)

,∴四邊形ABCP內的湖面面積有最大值,

答:當=時,四邊形ABCP內的湖面面積取到最大值,最大值為32平方百米

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列1,12,1,2,4,12,48,1,24,816,…,其中第一項是,接下來的兩項是,再接下來的三項是,,依此類推,若該數(shù)列前項和滿足:①2的整數(shù)次冪,則滿足條件的最小的

A. 21B. 91C. 95D. 10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十二生肖,又稱十二屬相,中國古人拿十二種動物來配十二地支,組成子鼠、丑牛、寅虎、卯兔、辰龍、巳蛇、午馬、未羊、申猴、酉雞、戌狗、亥豬十二屬相,F(xiàn)有十二生肖吉祥物各一件,甲、乙、丙三位同學一次隨機抽取一件作為禮物,甲同學喜歡馬、牛,乙同學喜歡馬、龍、狗,丙同學除了鼠不喜歡外其他的都喜歡,則這三位同學抽取的禮物都喜歡的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,過定點作直線與拋物線相交于、兩點.

1)已知,若點是點關于坐標原點的對稱點,求面積的最小值;

2)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若上恒成立,求實數(shù)的取值范圍;

(Ⅲ)若數(shù)列的前項和 ,求證:數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,已知.

(1)求數(shù)列的通項公式;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正整數(shù)的數(shù)列{an}的前n項和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數(shù)).

(1)若k=,t=,數(shù)列{an}是等差數(shù)列,求a1的值;

(2)若數(shù)列{an}是等比數(shù)列,求證:k<t.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前項和為,且,,數(shù)列滿足,且

I)求數(shù)列,的通項公式;

II)令,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年,河北等8省公布了高考改革綜合方案將采取模式,即語文、數(shù)學、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學、生物中選擇2.為了更好進行生涯規(guī)劃,張明同學對高一一年來的七次考試成績進行統(tǒng)計分析,其中物理、歷史成績的莖葉圖如圖所示.

1)若張明同學隨機選擇3門功課,求他選到物理政治兩門功課的概率;

2)試根據莖葉圖分析張明同學應在物理和歷史中選擇哪個學科?并闡述理由.

查看答案和解析>>

同步練習冊答案