17.已知數(shù)列{an},{bn}分別滿足a1=1,|an+1-an|=2,且${b_1}=-1,|{\frac{{{b_{n+1}}}}{b_n}}$|=2,其中n∈N*,設(shè)數(shù)列{an},{bn}的前n項和分別為Sn,Tn
(1)若數(shù)列{an},{bn}都是遞增數(shù)列,求數(shù)列{an},{bn}的通項公式;
(2)若數(shù)列{cn}滿足:存在唯一的正整數(shù)k(k≥2),使得ck<ck-1,則稱數(shù)列{cn}為“k墜點數(shù)列”.
①若數(shù)列{an}為“5墜點數(shù)列”,求Sn
②若數(shù)列{an}為“p墜點數(shù)列”,數(shù)列{bn}為“q墜點數(shù)列”,是否存在正整數(shù)m使得Sm+1=Tm?若存在,求出m的最大值;若不存在,請說明理由.

分析 (1)由兩數(shù)列為遞增數(shù)列,結(jié)合遞推式可得an+1-an=2,b2=-2b1,bn+2=2bn+1,n∈N*,由此可得數(shù)列{an}為等差數(shù)列,數(shù)列{bn}從第二項起構(gòu)成等比數(shù)列,然后利用等差數(shù)列和等比數(shù)列的通項公式求得答案;
(2)①根據(jù)題目條件判斷:數(shù)列{an}必為1,3,5,7,5,7,9,11,…,即前4項為首項為1,公差為2的等差數(shù)列,從第5項開始為首項5,公差為2的等差數(shù)列,求解Sn即可.
②運(yùn)用數(shù)列{bn}為“墜點數(shù)列”且b1=-1,綜合判斷數(shù)列{bn}中有且只有兩個負(fù)項.假設(shè)存在正整數(shù)m,使得Sm+1=Tm,顯然m≠1,且Tm為奇數(shù),而{an}中各項均為奇數(shù),可得m必為偶數(shù).再討論q>m,q=m,q<m,證明m≤6,求出數(shù)列即可.

解答 解:(1)∵數(shù)列{an},{bn}都為遞增數(shù)列,
∴由遞推式可得an+1-an=2,b2=-2b1=2,bn+2=2bn+1,n∈N*,
則數(shù)列{an}為等差數(shù)列,數(shù)列{bn}從第二項起構(gòu)成等比數(shù)列.
∴an=2n-1,bn=$\left\{\begin{array}{l}{-1,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$;                            
(2)①∵數(shù)列{an}滿足:存在唯一的正整數(shù)k=5,使得ak<ak-1,且|an+1-an|=2,
∴數(shù)列{an}必為1,3,5,7,5,7,9,11,…,
即前4項為首項為1,公差為2的等差數(shù)列,從第5項開始為首項5,公差為2的等差數(shù)列,
故Sn=$\left\{\begin{array}{l}{{n}^{2},n≤4}\\{{n}^{2}-4n+16,n≥5}\end{array}\right.$;                                   
②∵|$\frac{_{n+1}}{_{n}}$|=2,即bn+1=±2bn,
∴|bn|=2n-1,
而數(shù)列{bn}為“q墜點數(shù)列”且b1=-1,
∴數(shù)列{bn}中有且只有兩個負(fù)項.
假設(shè)存在正整數(shù)m,使得Sm+1=Tm,顯然m≠1,且Tm為奇數(shù),
而{an}中各項均為奇數(shù),
∴m必為偶數(shù).   
由Sm+1≤1+3+…+(2m+1)=(m+1)2
當(dāng)q>m時,Tm=-1+2+4+…+2m-2+2m-1=2m-3,
當(dāng)m≥6時,2m-3>(m+1)2,故不存在正整數(shù)m使得Sm+1=Tm;
當(dāng)q=m時,Tm=-1+21+…+2m-2+(-2m-1)=-3<0,
顯然不存在正整數(shù)m使得Sm+1=Tm;
當(dāng)q<m時,∴(Tmmin=-1+21+…+2m-3+(-2m-2)+2m-1=2m-1-3.
當(dāng)2m-1-3<(m+1)2,才存在正整數(shù)m使得Sm+1=Tm
即m≤6.                                                     
當(dāng)m=6時,q<6,
構(gòu)造:{an}為1,3,1,3,5,7,9,…,{bn}為-1,2,4,8,-16,32,64,…
此時p=3,q=5.
∴mmax=6,對應(yīng)的p=3,q=5.

點評 本題是新定義題,考查了數(shù)列遞推式,綜合考查學(xué)生運(yùn)用新定義求解數(shù)列的問題,考查了分析問題和解決問題的能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知一個口袋中裝有黑球和白球共7個,這些球除顏色外完全相同,從中任取2個球都是白球的概率為$\frac{1}{7}$.現(xiàn)有甲、乙兩人輪流、不放回地從口袋中取球,每次取1球,甲先取,乙后取,然后甲再取,…,直到口袋中的球取完為止.若取出白球,則記2分;若取出黑球,則記1分.每個球在每一次被取出是等可能的.用ξ表示甲、乙最終得分差的絕對值.
(1)求口袋中原有白球的個數(shù);
(2)求隨機(jī)變量ξ的概率分布和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2-x,則不等式f(x)>x的解集用區(qū)間表示為(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x+1}-3,-1<x≤0}\\{x,0<x≤1}\end{array}\right.$,若函數(shù)g(x)=f(x)-mx-m在(-1,1]內(nèi)有且僅有兩個不同的零點,則實數(shù)m的取值范圍為($-\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項和,若a1,a2,a4成等比數(shù)列,則$\frac{S_4}{S_2}$的值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)a、b表示兩條直線,α、β表示兩個平面,則下列命題正確的是②③.(填寫所有正確命題的序號)
①若a∥b,a∥α,則b∥α; ②若a∥b,a?α,b⊥β,則α⊥β;
③若α∥β,a⊥α,則a⊥β;④若α⊥β,a⊥b,a⊥α,則b⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)無窮等差數(shù)列{an}的前n項和為Sn,已知a1=1,S3=12.
(1)求a24與S7的值;
(2)已知m、n均為正整數(shù),滿足am=Sn.試求所有n的值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若數(shù)列{$\frac{1}{n(n+1)}$}的前n項和為Sn,若Sn•Sn+1=$\frac{3}{4}$,則正整數(shù)n的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在三角形ABC中,角A、B、C的對邊分別為a,b,c,a=4bcosC,$sinC=\frac{{3\sqrt{10}}}{10}$
(1)求角B 的值;
(2)若$b=\sqrt{5}$,求三角形ABC 的面積.

查看答案和解析>>

同步練習(xí)冊答案