分析 由g(x)=f(x)-mx-m=0,即f(x)=m(x+1),作出兩個(gè)函數(shù)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:由g(x)=f(x)-mx-m=0,即f(x)=m(x+1),
分別作出函數(shù)f(x)和y=h(x)=m(x+1)的圖象如圖:
由圖象可知f(1)=1,h(x)表示過定點(diǎn)A(-1,0)的直線,
當(dāng)h(x)過(1,1)時(shí),m=$\frac{1}{2}$,此時(shí)兩個(gè)函數(shù)有兩個(gè)交點(diǎn),
此時(shí)滿足條件的m的取值范圍是0<m≤$\frac{1}{2}$,
當(dāng)h(x)過(0,-2)時(shí),h(0)=-2,解得m=-2,此時(shí)兩個(gè)函數(shù)有兩個(gè)交點(diǎn),
當(dāng)h(x)與f(x)相切時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn),此時(shí) $\frac{1}{x+3}$x-3=m(x+1)即m(x+1)2+3(x+1)-1=0,
當(dāng)m=0時(shí),只有1解,當(dāng)m≠0,由△=9+4m=0得m=-$\frac{9}{4}$,此時(shí)直線和f(x)相切,
∴要使函數(shù)有兩個(gè)零點(diǎn),則-$\frac{9}{4}$<m≤-2或0<m≤$\frac{1}{2}$.
故答案為:($-\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].
點(diǎn)評 本題主要考查函數(shù)零點(diǎn)的應(yīng)用,利用數(shù)形結(jié)合是解決此類問題的基本方法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{7}{3}$ | C. | 3 | D. | $\frac{11}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,8] | B. | (0,8] | C. | (-∞,0]∪[8,+∞) | D. | (-∞,0)∪(8,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com