1.執(zhí)行如圖的程序框圖,如果輸入的x的值為1,則輸出的x的值為(  )
A.4B.13C.40D.121

分析 模擬執(zhí)行程序框圖,依次寫出得到的x,n的值,即可得出結(jié)論.

解答 解:模擬執(zhí)行程序框圖,可得
x=4,n=2
滿足條件n≤3,x=13,n=3,
滿足條件n≤3,x=40,n=4,
不滿足條件n≤3,
輸出x的值為40.
故選:C.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線l過點(diǎn)(2,0)且與曲線$y=-\frac{4}{{{e^x}+1}}$相切,設(shè)其傾斜角為,則α=( 。
A.30°B.45°C.60°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在等比數(shù)列{an}中,若a5+a6+a7+a8=$\frac{15}{8}$,a6a7=-$\frac{9}{8}$,則$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{6}}$+$\frac{1}{{a}_{7}}$+$\frac{1}{{a}_{8}}$=-$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知在等差數(shù)列{an}中,a3=5,a1+a19=-18
(1)求公差d及通項(xiàng)an
(2)求數(shù)列 {an}的前n項(xiàng)和Sn及使得Sn的值取最大時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(2)如圖,在△ABC中,D是BC的中點(diǎn),$\overrightarrow{AE}$=$\overrightarrow{FD}$=$\frac{1}{4}$$\overrightarrow{AD}$,
(i)若$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BF}$•$\overrightarrow{CF}$=-1,求$\overrightarrow{BE}$•$\overrightarrow{CE}$的值;
(ii)若P為AD上任一點(diǎn),且$\overrightarrow{PA}$•$\overrightarrow{PC}$≥$\overrightarrow{EA}$•$\overrightarrow{EC}$恒成立,求證:2AC=BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某三棱錐的三視圖如圖所示,則該三棱錐的體積是( 。
A.2B.1C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=sin(2x+φ),其中|φ|<π,若f(x)≤|f($\frac{π}{6}$)|對(duì)x∈R恒成立,且f($\frac{π}{2}$)>f(π),則f(x)的遞增區(qū)間是( 。
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]((k∈Z)D.[kπ-$\frac{π}{2}$,kπ]((k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}前n項(xiàng)和為${S_n}=2-5+8-11+14-17+…+{(-1)^{n-1}}(3n-1)$,則S15+S22-S31的值是(  )
A.-57B.-37C.16D.57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知拋物線C:y2=2px(p>0),焦點(diǎn)為F,過點(diǎn)G(p,0)任作直線l交拋物線C于A,M兩點(diǎn),設(shè)A(x1,y1),M(x2,y2).
(1)證明:y1y2為常數(shù),并求當(dāng)y1y2=-8時(shí)拋物線C的方程;
(2)若直線AF與x軸不垂直,直線AF交拋物線C于另一點(diǎn)B,直線BG交拋物線C于另一點(diǎn)N.求證:直線AB與直線MN斜率之比為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案