11.已知(1+x)(1-2x)6=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7,則a3=(  )
A.220B.350C.380D.410

分析 由(1+x)(1-2x)6=[(x-1)+2][2(x-1)+1]6,可得[(x-1)+2][2(x-1)+1]6 =a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7,求得a3的值.

解答 解:由(1+x)(1-2x)6=[(x-1)+2][2(x-1)+1]6,
(1+x)(1-2x)6=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7
∴[(x-1)+2][2(x-1)+1]6 =a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7,
∴a3=C6222+2C6323=60+320=380,
故選:C.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分),以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy(如圖所示).景觀湖的邊界線符合函數(shù)y=x+$\frac{1}{x}$(x>0)模型,園區(qū)服務(wù)中心P在x軸正半軸上,PO=$\frac{4}{3}$百米.
(1)若在點(diǎn)O和景觀湖邊界曲線上一點(diǎn)M之間修建一條休閑長廊OM,求OM的最短長度;
(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道PQ最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過點(diǎn)M(m,0)(m>0)作直線l,與拋物線y2=4x有兩交點(diǎn)A,B,F(xiàn)是拋物線的焦點(diǎn),若$\overrightarrow{FA}•\overrightarrow{FB}<0$,則m的取值范圍是(3-2$\sqrt{2}$,3+2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校舉辦“中國詩詞大賽”活動,某班派出甲乙兩名選手同時(shí)參加比賽.大賽設(shè)有15個詩詞填空題,其中“唐詩”、“宋詞”和“毛澤東詩詞”各5個.每位選手從三類詩詞中各任選1個進(jìn)行作答,3個全答對選手得3分,答對2個選手得2分,答對1個選手得1分,一個都沒答對選手得0分.已知“唐詩”、“宋詞”和“毛澤東詩詞”中甲能答對的題目個數(shù)依次為5,4,3,乙能答對的題目個數(shù)依此為4,5,4,假設(shè)每人各題答對與否互不影響,甲乙兩人答對與否也互不影響.
求:
(Ⅰ)甲乙兩人同時(shí)得到3分的概率;
(Ⅱ)甲乙兩人得分之和ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{3}$sin2x+sinxcosx-$\frac{\sqrt{3}}{2}$
(1)求函數(shù)y=f(x)在[0,$\frac{π}{2}$]上的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位長度,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求證:存在無窮多個互不相同的整數(shù)x0,使得g(x0)>$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.點(diǎn)P為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$右支上的一點(diǎn),其左、右焦點(diǎn)分別為F1,F(xiàn)2,若△PF1F2的內(nèi)切圓I與x軸相切于點(diǎn)A,過F2作PI的垂線,重足為B,O為坐標(biāo)原點(diǎn),那么$\frac{{|{OA}|}}{{|{OB}|}}$的值為( 。
A.1B.$\sqrt{2}$C.$\frac{a}$D.$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)={2^x}+\frac{1}{{{2^{x+2}}}}$,則f(x)取最小值時(shí)對應(yīng)的x的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.圓(x-1)2+(y+1)2=10的半徑為( 。
A.(1,-1)B.(-1,1)C.$\sqrt{10}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某多面體的三視圖如下圖所示(網(wǎng)格紙上小正方形的邊長為1),則該多面體的表面積為( 。
A.$8+4\sqrt{2}$B.$6+4\sqrt{2}$C.12D.$8+5\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案