14.某導(dǎo)演先從2個(gè)金雞獎和3個(gè)百花獎的5位演員名單中挑選2名演主角,后又從剩下的演員中挑選1名演配角.這位導(dǎo)演挑選出2個(gè)金雞獎演員和1個(gè)百花獎演員的概率為(  )
A.$\frac{1}{3}$B.$\frac{1}{10}$C.$\frac{2}{5}$D.$\frac{3}{10}$

分析 利用列舉法確定基本事件的個(gè)數(shù),即可求出概率.

解答 解:從2個(gè)金雞獎和3個(gè)百花獎的5位演員名單中挑選2名演主角,后又從剩下的演員中挑選1名演配角共有:
132,134,135,142,143,145,152,153,154,
231,234,235,241,243,245,251,253,254,共18種,
滿足條件的有:
132,142,152,231,241,251,共6種
故選:A.

點(diǎn)評 本題考查古典概型概率的計(jì)算,考查列舉法的運(yùn)用,確定基本事件的個(gè)數(shù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一名小學(xué)生的年齡和身高(單位:cm)的數(shù)據(jù)如下表:
年齡x6789
身高y118126136144
由散點(diǎn)圖可知,身高y與年齡x之間的線性回歸方程為$\stackrel{∧}{y}$=8.8$\stackrel{∧}{x}$+a,則a的值為( 。
A.65B.74C.56D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lg$\frac{2-x}{x-1}$的定義域?yàn)榧螦,函數(shù)g(x)=$\sqrt{2x-a}$的定義域?yàn)榧螧.
(1)求集合A,B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若命題p:?x≥0,ex+2x-1≥0,則命題p的否定為(  )
A.?x0<0,e${\;}^{{x}_{0}}$+2x0-1<0B.?x≥0,ex+2x-1<0
C.?x0≥0,e${\;}^{{x}_{0}}$+2x0-1<0D.?x0<0,e${\;}^{{x}_{0}}$+2x0-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.閱讀如圖所示的程序框圖,則輸出S的值為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若三個(gè)互不相等的正數(shù)x1,x2,x3滿足xi+lnxi=mi(i=1,2,3),且m1,m2,m3三個(gè)數(shù)成等差數(shù)列,則下列關(guān)系正確的是( 。
A.x1•x3=x22B.x1•x3<x22C.x1•x3>x22D.x1•x3≥x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:?x<1,都有l(wèi)og${\;}_{\frac{1}{2}}}$x<0,命題q:?x∈R,使得x2≥2x成立,則下列命題是真命題的是(  )
A.p∨(¬q)B.(¬p)∨(¬q)C.p∨qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知球O的半徑為2,圓M和圓N是球的互相垂直的兩個(gè)截面,圓M和圓N的面積分別為2π和π,則|MN|=( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在棱長為a的正方體ABCD-A1B1C1D1中,平面AD1C把正方體分成兩部分.求:
(1)直線C1B與平面AD1C所成的角;
(2)平面C1D1DC與平面AD1C所成二面角的平面角的余弦值;
(3)兩部分中體積大的部分的體積.

查看答案和解析>>

同步練習(xí)冊答案