【題目】已知橢圓的離心率為,其右焦點(diǎn)到直線(xiàn)的距離為.
(1)求橢圓的方程;
(2)若過(guò)作兩條互相垂直的直線(xiàn),是與橢圓的兩個(gè)交點(diǎn),是與橢圓的兩個(gè)交點(diǎn),分別是線(xiàn)段的中點(diǎn),試判斷直線(xiàn)是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn).請(qǐng)說(shuō)明理由.
【答案】(1);(2)直線(xiàn)過(guò)定點(diǎn)
【解析】
(1)由題意得,求出,即可求出橢圓方程;
(2)設(shè)直線(xiàn)的方程為,①當(dāng)時(shí),聯(lián)立方程組,化簡(jiǎn)可得
,進(jìn)而求出,同理可得,進(jìn)而求出,求出直線(xiàn)的方程,求出必過(guò)的定點(diǎn);②當(dāng)時(shí),易知直線(xiàn)過(guò)定點(diǎn);綜上即可求出結(jié)果.
解:(1)由題意得,∴,
∴橢圓的方程為;
(2)由(1)得,設(shè)直線(xiàn)的方程為,點(diǎn)的坐標(biāo)分別為,
①當(dāng)時(shí),由,得,
∴,∴
同理,由,可得
∴直線(xiàn)的方程為,過(guò)定點(diǎn);
②當(dāng)時(shí),則直線(xiàn)的方程為,
∴直線(xiàn)過(guò)定點(diǎn)
綜上,直線(xiàn)過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)f(x)=﹣x3﹣6x2﹣9x+3.
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;
(2)若直線(xiàn)是曲線(xiàn)的切線(xiàn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的棱長(zhǎng)均為2,O為AC的中點(diǎn),平面A'OB⊥平面ABC,平面⊥平面ABC.
(1)求證:A'O⊥平面ABC;
(2)求二面角A﹣BC﹣C'的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線(xiàn)的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)若與有且僅有三個(gè)公共點(diǎn),求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,平面,底面四邊形為直角梯形,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)為中點(diǎn),在四邊形所在的平面內(nèi)是否存在一點(diǎn),使得平面,若存在,求三角形的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com