19.函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且滿(mǎn)足f(a•b)=f(a)+f(b),f(3)=1則不等式:f(x)-f(x-2)>3的解集為(2,$\frac{27}{13}$).

分析 由題意知f(2×2)=f(2)+f(2)=2,f(2×4)=f(2)+f(4)=3,f(x)>f(8x-16),再由f(x)的定義域?yàn)椋?,+∞),且在其上為增函數(shù)得得到不等式組,即可解得答案.

解答 解:∵f(xy)=f(x)+f(y),f(3)=1,
∴f(3×3)=f(3)+f(3)=2,
f(3×9)=f(3)+f(9)=3,
∵f(x)-f(x-2)>3,
∴f(x)>f(x-2)+f(27)=f(27x-54)
∵f(x)是定義在(0,+∞)上的增函數(shù)解得,
$\left\{\begin{array}{l}x>0\\ x-2>0\\ x>27x-54\end{array}\right.$
解得,2<x<$\frac{27}{13}$.
所以不等式f(x)-f(x-2)<3的解集為(2,$\frac{27}{13}$).
故答案為:(2,$\frac{27}{13}$).

點(diǎn)評(píng) 本題考查了抽象函數(shù)及其應(yīng)用,函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某單位有職工200名,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1-200編號(hào),并按編號(hào)順序平均分為40組.若第5組抽出的號(hào)碼為22,則第10組抽出的號(hào)碼應(yīng)是( 。
A.45B.46C.47D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x0是函數(shù)f(x)=3x+$\frac{2}{1-x}$的一個(gè)零點(diǎn).若x1∈(1,x0),x2∈(x0,+∞),則( 。
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)y=2cosx的定義域?yàn)閇$\frac{π}{3}$,$\frac{4π}{3}$],值域?yàn)閇a,b],則b-a的值是( 。
A.2B.3C.$\sqrt{3}$+2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.一投資公司有300萬(wàn)元資金,準(zhǔn)備投資A、B兩個(gè)項(xiàng)目,按照合同要求,對(duì)項(xiàng)目A的投資不少于對(duì)項(xiàng)目B的三分之二,而且每個(gè)項(xiàng)目的投資不少于25萬(wàn)元,若對(duì)項(xiàng)目A投資1萬(wàn)元可獲利潤(rùn)0.4萬(wàn)元,對(duì)項(xiàng)目B投資1萬(wàn)元可獲利潤(rùn)0.6萬(wàn)元,求該公司在這兩個(gè)項(xiàng)目上共可獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)求$f(x)=tan(3x-\frac{π}{4})$的定義域
(2)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0)的部分圖象如圖所示,求f(0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列刻畫(huà)一組數(shù)據(jù)離散程度的是(  )
A.平均數(shù)B.方差C.中位數(shù)D.眾數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(x)是定義在[-1,1]上的奇函數(shù),若m,n∈[-1,1],m+n≠0時(shí),有$\frac{f(m)+f(n)}{m+n}$>0,則不等式$f(x+\frac{1}{2})<f(1-x)$的解集為$[0,\frac{1}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知底面為矩形的四棱錐D-ABCE,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,DE⊥AE,G、F分別為AD,CE的中點(diǎn),其中二面角D-AE-C的平面角的正切值為-tan2.
(1)求證:FG∥平面BCD;
(2)求二面角A-BD-C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案