若x,y滿足約束條件
y≥0
y≤x
2x+y-6≤0
,則目標(biāo)函數(shù)z=x+y的最大值是
 
考點:簡單線性規(guī)劃
專題:計算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,將z=x+y化為y=-x+z,z相當(dāng)于直線y=-x+z的縱截距,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,

將z=x+y化為y=-x+z,z相當(dāng)于直線y=-x+z的縱截距,
則由y=6-2x與y=x聯(lián)立解得,
x=2,y=2;
故z=2+2=4;
故答案為:4.
點評:本題考查了簡單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y=a 與圓x2+y2=1交于不同的兩點A,B,O為坐標(biāo)原點,若
OA
OB
=a,則a的值為( 。
A、
5
2
B、
1-
5
2
C、
-1-
5
2
D、
-1+
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2+2a2
x+1(a<0),則函數(shù)f(x)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

王強參加了一場3000米的賽跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分鐘,王強以6米/秒的速度跑了多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x,x≥0
x2,x<0
,則關(guān)于x的不等式f(x2)>f(4-3x)的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}、{bn}滿足an=2bn+1,{bn}是首項為1,公差為1的等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)科研課題組計劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測,能獲得10萬元~1000萬元的投資收益.企業(yè)擬制定方案對課題組進(jìn)行獎勵,獎勵方案為:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金也不超過投資收益的20%,并用函數(shù)y=f(x)這一模型模擬獎勵方案.
(Ⅰ)試用模擬函數(shù)y=f(x)的性質(zhì)表述獎勵方案;
(Ⅱ)試分析下列兩個函數(shù)模型是否符合獎勵方案的要求?說明你的理由.(1)y=
x
120
+1
; (2)y=4lgx-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個焦點,△PF1F2的頂點P為雙曲線上一個動點,△PF1F2內(nèi)切圓圓心I的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2x+4y+1=0,求:
(1)與圓C同心,且半徑為
2010
的圓的方程;
(2)與圓C同心,且被直線l:2x-y+1=0截得的弦長為2
5
的圓的方程;
(3)過點P(3,1)與圓C相切的直線的方程.

查看答案和解析>>

同步練習(xí)冊答案