13.如圖(1),已知正方形ABCD,E,F(xiàn)分別是AB,CD的中點,將△ADE沿DE折起,如圖(2)所示,則BF與平面ADE的位置關系是平行.

分析 推導出四邊形BEDF是平行四邊形,從而BF∥DE,當將△ADE沿DE折起后,仍有BF∥DE,由此推導出BF∥平面ADE.

解答 解:∵正方形ABCD,E,F(xiàn)分別是AB,CD的中點,
∴$BE\underset{∥}{=}DF$,
∴四邊形BEDF是平行四邊形,
∴BF∥DE,
當將△ADE沿DE折起后,仍有BF∥DE,
∵BF?平面ADE,DE?平面ADE,
∴BF∥平面ADE.
故答案為:平行.

點評 本題考查線面的位置關系的判斷,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,b sinB=csinC,且sin2A=sin2B+sin2C,那么△ABC一定是( 。
A.等腰三角形B.等腰直角三角形
C.直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=ax3-2bx2+cx+4d(a、b、c、d∈R)圖象關于原點對稱,且函數(shù)y=f(x)在點P(1,$-\frac{2}{3}$)處的切線與x軸平行.
(1)求a、b、c、d的值;
(2)當x∈[-1,1]時,圖象上是否存在兩點,使得過此兩點處的切線互相垂直?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為$ρ=4sin({θ-\frac{π}{6}})$.
(I)求圓C的直角坐標方程;
(II)若P(x,y)是圓上的任意一點,求$\sqrt{3}x+y$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知A={x|x<-2},B={x|x<m},若B是A的子集,則實數(shù)m的取值范圍為m≤-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知tanθ=2,求下列各式的值.
(1)$\frac{4sinθ-2cosθ}{3sinθ+5cosθ}$;   
(2)1-4sinθcosθ+2cos2θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,為測量山高MN,選擇A和另一座山的山頂C為測量觀測點,從A點測得M點的仰角∠MAN=60°,C點的仰角∠CAB=45°,以及∠MAC=75°;從C點測得∠MCA=60°.已知山高BC=200m,求山高MN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知P為拋物線y2=4x上的動點,求點P到點A(-1,1)的距離與點P到直線x=-1的距離之和的最小值( 。
A.2B.$\sqrt{5}$C.3D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示,在直四棱柱ABCD-A1B1C1D1中,側(cè)棱垂直于底面,DB=BC,DB⊥AC,點M是棱BB1上的一點.
(1)若DB=BC=CD,求BD與平面CDD1C1所成角;
(2)求證:MD⊥AC;
(3)是否存在點M,使得平面DMC1⊥平面CC1D1D?若存在,試確定點M的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案