1.已知函數(shù)y=f(x)圖象關(guān)于y軸對(duì)稱的圖象對(duì)應(yīng)的函數(shù)為y=F(x),當(dāng)函數(shù)y=f(x)和y=F(x)在區(qū)間[a,b]同時(shí)遞增或同時(shí)遞減時(shí),區(qū)間[a,b]叫做函數(shù)y=f(x)的“不動(dòng)區(qū)間”.若區(qū)間[1,2]為函數(shù)y=|2x-t|的“不動(dòng)區(qū)間”,則實(shí)數(shù)t的最大值為2.

分析 若區(qū)間[1,2]為函數(shù)f(x)=|2x-t|的“不動(dòng)區(qū)間”,則函數(shù)f(x)=|2x-t|和函數(shù)F(x)=|2-x-t|在[1,2]上單調(diào)性相同,則(2x-t)(2-x-t)≤0在[1,2]上恒成立,進(jìn)而得到答案.

解答 解:∵函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對(duì)稱,
∴F(x)=f(-x)=|2-x-t|,
∵區(qū)間[1,2]為函數(shù)f(x)=|2x-t|的“不動(dòng)區(qū)間”,
∴函數(shù)f(x)=|2x-t|和函數(shù)F(x)=|2-x-t|在[1,2]上單調(diào)性相同,
∵y=2x-t和函數(shù)y=2-x-t的單調(diào)性相反,
∴(2x-t)(2-x-t)≤0在[1,2]上恒成立,
即1-t(2x+2-x)+t2≤0在[1,2]上恒成立,
即2-x≤t≤2x在[1,2]上恒成立,
即有$\frac{1}{2}$≤t≤2;
即實(shí)數(shù)t的最大值為2;
故答案為:2.

點(diǎn)評(píng) 本題考查函數(shù)恒成立問題,涉及指數(shù)函數(shù)的圖象和性質(zhì),正確理解不動(dòng)區(qū)間的定義,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某三棱錐的三視圖如圖所示,正視圖和俯視圖都是等腰直角三角形,則該三棱錐中棱長最大值是(  )
A.$2\sqrt{5}$B.$2\sqrt{3}$C.$2\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行若圖所示的程序框圖,若輸入的n=216,則輸出s的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=x3-3bx+3b在(0,1)內(nèi)有極小值,則實(shí)數(shù)b的取值范圍是(  )
A.(0,1)B.(-∞,1)C.(0,+∞)D.$(-∞,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖程序框圖,若輸入的a,b分別為16,12,則輸出的a=( 。
A.1B.2C.4D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,點(diǎn)P為矩形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,點(diǎn)E為PA的中點(diǎn).
(1)求證:PC∥平面BED;
(2)求異面直線AD與PB所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=|2x-1|.
(Ⅰ)解關(guān)于x的不等式f(2x)≤f(x+1);
(Ⅱ)若實(shí)數(shù)a,b滿足a-2b=2,求f(a+1)+f(2b-1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機(jī)取一件,其長度誤差落在(3,6)內(nèi)的概率為( 。
附:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544.
A.0.2718B.0.0456C.0.3174D.0.1359

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知?jiǎng)狱c(diǎn)P(x,y)與一定點(diǎn)F(1,0)的距離和它到一定直線l:x=4的距離之比為$\frac{1}{2}$.
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程;
(2)己知直線l':x=my+1交軌跡C于A、B兩點(diǎn),過點(diǎn)A、B分別作直線l的垂線,垂足依次為點(diǎn)D、E.連接AE、BD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則說明理由.

查看答案和解析>>

同步練習(xí)冊答案