分析 利用焦點坐標qcc,離心率求出a,然后求解b,求出橢圓方程,然后設出M坐標,轉(zhuǎn)化為P,代入求解即可.
解答 解:橢圓C的左右焦點坐標分別是(-2,0),(2,0),離心率為$\frac{\sqrt{2}}{2}$,
可得c=2,a=2$\sqrt{2}$,則b=2,
橢圓C的方程為:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,
設M(x,y)則P(2x,y)代入:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,
可得:$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.
則點M的軌跡方程為:$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.
故答案為:$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.
點評 本題考查軌跡方程的求法,轉(zhuǎn)化思想的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2$\sqrt{2}$,2) | B. | (2$\sqrt{2}$,2)或(-2$\sqrt{2}$,2) | C. | (2,2$\sqrt{2}$) | D. | (2,2$\sqrt{2}$)或(2,-2$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{32}$,0) | B. | (0,$\frac{1}{32}$) | C. | (0,4) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
A. | $\widehat{y}$=0.7x+0.35 | B. | $\widehat{y}$=0.7x+4.5 | C. | $\widehat{y}$=0.7x-0.35 | D. | $\widehat{y}$=0.7x-4.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{3}{2}$ | C. | -2 | D. | $-\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com