分析 求出集合A={x|-4<x<$\frac{3}{2}$},由A∩B=∅,A∪B=(-4,8],得到B={x|x2-ax+b≤0}={x|$\frac{3}{2}≤x≤8$},由此能求出a,b的值.
解答 解:∵集合A={x|12-5x-2x2>0}={x|-4<x<$\frac{3}{2}$},B={x|x2-ax+b≤0},
滿足A∩B=∅,A∪B=(-4,8],
∴B={x|x2-ax+b≤0}={x|$\frac{3}{2}≤x≤8$},
∴$\frac{3}{2}$,8是方程|x2-ax+b=0的兩個根,
∴$\left\{\begin{array}{l}{\frac{3}{2}+8=a}\\{\frac{3}{2}×8=b}\end{array}\right.$,解得a=$\frac{19}{2}$,b=12.
點評 本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意一元二次不等式的性質的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | R<Q<P | B. | Q<R<P | C. | P<Q<R | D. | R<P<Q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 偶函數(shù) | B. | 奇函數(shù) | C. | 不具有奇偶函 | D. | 奇偶性與p有關 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∈R,使得${e^{x_0}}≤0$ | B. | 命題?x∈R,2x>x2的否定是真命題 | ||
C. | {x|x-1<0}∩{x|x2-4>0}=(-2,0) | D. | a>1,b>1的充分不必要條件是ab>1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m=2 | B. | m=-1 | C. | m=2 或m=-1 | D. | $m>-\frac{1}{5}$且m≠$\frac{1+\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f (x1)-f (x2)<0 | B. | f (x1)-f (x2)>0 | C. | f (x1)+f (x2)<0 | D. | f (x1)+f (x2)>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com