若數(shù)列{an}的前n項和為Sn=2n2+3n,則該數(shù)列的通項公式an=
 
考點:等差數(shù)列的前n項和,等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用公式an=
S1,n=1
Sn-Sn-1,n≥2
求解.
解答: 解:∵數(shù)列{an}的前n項和為Sn=2n2+3n,
∴a1=S1=2+3=5,
n≥2時,an=Sn-Sn-1=(2n2+3n)-[2(n-1)2+3(n-1)]=4n+1,
n=1時上式成立,
∴an=4n+1.
故答案為:4n+1.
點評:本題考查數(shù)列的通項公式的求法,是基礎(chǔ)題,解題時要注意公式an=
S1,n=1
Sn-Sn-1,n≥2
的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足2x+2+4y=2x+2y+1,則2x+4y的最小值是( 。
A、4
B、
9
2
C、6
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin410°+sin450°+sin470°=( 。
A、1
B、
9
8
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x<1”是“x2-3x+2>0”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點為坐標(biāo)原點O,焦點F(0,1)
(1)求拋物線C的方程;
(2)過點F作直線交拋物線C于A、B兩點,若直線AO與BO分別交直線l:y=x-2于M、N兩點,當(dāng)|MN|=
16
7
時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)陣
a11a12a13
a21a22a23
a31a32a33
里,每行、每列的數(shù)依次均成等比數(shù)列,且a22=2,則所有數(shù)的乘積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩平行直線4x+3y-2=0與4x+3y+5=0之間的距離為(  )
A、
9
10
B、
7
10
C、
10
9
D、
7
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lna+lnb=2ln(a-2b),求log 
5
a
b
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠計劃用甲,乙兩臺機器生產(chǎn)A、B兩種產(chǎn)品,每種產(chǎn)品都要依次進(jìn)行甲、乙機器的加工,已知生產(chǎn)一件A產(chǎn)品在甲、乙機器上加工的時間分別為2小時和3小時,生產(chǎn)一件B產(chǎn)品在甲、乙機器上加工的時間分別為4小時和2小時,甲、乙機器每周可分別工作180小時和150小時,若每件A產(chǎn)品的利潤是40元,每件B產(chǎn)品的利潤是60元,問此工廠應(yīng)如何安排生產(chǎn)才能獲得最大的利潤(即如何確定一周內(nèi)每種產(chǎn)品生產(chǎn)的數(shù)量)?

查看答案和解析>>

同步練習(xí)冊答案