已知點(diǎn)P(2,y)在拋物線y2=4x上,則P點(diǎn)到焦點(diǎn)F的距離為(  )
A、2
B、3
C、
3
D、
2
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用焦點(diǎn)弦長的性質(zhì)即可得出.
解答: 解:∵點(diǎn)P(2,y)在拋物線y2=4x上,
∴P點(diǎn)到焦點(diǎn)F的距離=2+1=3.
故選:B.
點(diǎn)評(píng):本題考查了焦點(diǎn)弦長的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a,b,則“a2+b2≤4”是“ab≤2”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比例數(shù)列{an}中,
(1)a4=27,q=-3,求a7
(2)a2=18,a4=8,求a1與q;
(3)a5=4,a7=6,求a9
(4)a5-a1=15,a4-a2=6,求a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:在梯形ABCD中,AD∥BC且AD=
1
2
BC
,AC與BD相交于O,設(shè)
AB
=
a
,
AD
=
b
,用
a
,
b
表示
BO
,則
BO
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
mx
4x2+16
,g(x)=(
1
2
|x-m|,其中m∈R且m≠0.
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)m<-2時(shí),求函數(shù)F(x)=f(x)+g(x)在區(qū)間[-2,2]上的最值;
(Ⅲ)設(shè)函數(shù)h(x)=
f(x),x≥2
g(x),x<2
,當(dāng)m≥2時(shí),若對(duì)于任意的x1∈[2,+∞),總存在唯一的x2∈(-∞,2),使得h(x1)=h(x2)成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Q是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)1、F2為左、右焦點(diǎn),過F1作∠F1QF2外角平分線的垂線交F2Q的延長線于P點(diǎn),當(dāng)Q點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),P點(diǎn)的軌跡是(  )
A、直線B、圓C、橢圓D、雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,sinθ),
b
=(cosθ,-
3
),θ∈[0,2π).
(Ⅰ)若
a
b
,求tanθ的值;
(Ⅱ)若2|
a
|=|
b
|,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(
1
2
,0)和圓Q:4x2+4x+4y2-31=0,圓E過點(diǎn)P且與圓Q內(nèi)切,求圓心E的軌跡G的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{
1
an
}是首項(xiàng)為1的等差數(shù)列,a1,a2,a5成公比不為1的等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anan+1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案