10.甲每次解答一道幾何體所用的時間在5至7分鐘,乙每次解答一道幾何體所用的時間在6至8分鐘,現(xiàn)甲、乙各解同一道幾何體,則乙比甲先解答完的概率為$\frac{1}{8}$.

分析 分別設(shè)出兩個人解答一道幾何題所用的時間為x,y,則5<x<7,6<y<8,甲、乙各解同一道幾何題,則乙比甲先解答完的滿足x<y,因此求出滿足條件的區(qū)域面積,利用面積比求概率.

解答 解:設(shè)兩個人解答一道幾何題所用的時間為分別為x,y,則5<x<7,6<y<8,對應(yīng)區(qū)域的面積為4,甲、乙各解同一道幾何題,則乙比甲先解答完的滿足x>y,對應(yīng)區(qū)域面積
$\frac{1}{2}×1×1$=$\frac{1}{2}$,由幾何概型的個數(shù)得到所求概率為$\frac{1}{8}$;
故答案為:$\frac{1}{8}$.

點(diǎn)評 本題的難點(diǎn)是把時間分別用x,y坐標(biāo)來表示,從而把時間長度這樣的一維問題轉(zhuǎn)化為平面圖形的二維面積問題,轉(zhuǎn)化成面積型的幾何概型問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.${log_2}\frac{1}{4}+{log_2}32$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點(diǎn)分別關(guān)于兩條漸近線的對稱點(diǎn)重合,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在圖所示的幾何體中,底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N為線段PB的中點(diǎn).
(1)證明:NE⊥平面PBD;
(2)求四棱錐B-CEPD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在《爸爸去哪兒》第二季第四期中,村長給6位“萌娃”布置一項(xiàng)搜尋空投食物的任務(wù).已知:①食物投擲地點(diǎn)有遠(yuǎn)、近兩處;②由于Grace年紀(jì)尚小,所以要么不參與該項(xiàng)任務(wù),但此時另需一位小孩在大本營陪同,要么參與搜尋近處投擲點(diǎn)的食物;③所有參與搜尋任務(wù)的小孩須被均分成兩組,一組去遠(yuǎn)處,一組去近處,那么不同的搜尋方案有40種.(以數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.拋物線y=4ax2(a≠0)的焦點(diǎn)坐標(biāo)是$(0,\frac{1}{16a})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{1}{{a}_{n}+1}$=$\frac{3}{{a}_{n+1}+1}$,a2=5,則S6=722.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.《九章算術(shù)•衰分》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:
    今有稟栗,大夫、不更、簪裹、上造、公士、凡五人,一十五斗,今有大夫一人后來,亦當(dāng)稟五斗,倉無栗,欲以衰出之,問各幾何?
    現(xiàn)解決如下問題:原有大夫、不更、簪裹、上造、公士5種爵位各1人,現(xiàn)增加一名大夫,共計(jì)6人,按照爵位共獻(xiàn)出5斗栗,其中5種爵位的人所獻(xiàn)“稟栗”成等差數(shù)列{an},其公差d滿足d=-a5,請問6人中爵位為“簪裹”的人需獻(xiàn)出栗的數(shù)量是( 。
A.$\frac{3}{4}$斗B.$\frac{4}{5}$斗C.1斗D.$\frac{5}{4}$斗

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow m$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),$\overrightarrow n$=(-$\sqrt{3}$,1),x∈R,則|$\overrightarrow m$-$\overrightarrow n$|的最大值是3.

查看答案和解析>>

同步練習(xí)冊答案