16.某個(gè)體服裝店經(jīng)營(yíng)某種服裝,在某周內(nèi)獲純利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如表所示:
x3456789
y66697381899091
(1)畫出散點(diǎn)圖;
(2)求純利y與每天銷售件數(shù)x之間的回歸直線方程;
(3)若該周內(nèi)某天銷售服裝20件,估計(jì)可獲純利多少元(保留到整數(shù)位).
(附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計(jì)分別為:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\sum_{i=1}^{7}$xi2=280,$\sum_{i=1}^{7}$yi2=45 309,$\sum_{i=1}^{7}$xiyi=3 487.)

分析 (1)根據(jù)表中所給的數(shù)據(jù),可得散點(diǎn)圖;
(2)求出出橫標(biāo)和縱標(biāo)的平均數(shù),得到樣本中心點(diǎn),求出對(duì)應(yīng)的橫標(biāo)和縱標(biāo)的積的和,求出橫標(biāo)的平方和,做出系數(shù)和a的值,寫出線性回歸方程.
(3)將x=20代入回歸直線方程,可得結(jié)論.

解答 解:(1)散點(diǎn)圖如圖所示

(2)由散點(diǎn)圖知,y與x有線性相關(guān)關(guān)系,
∵$\sum_{i=1}^{7}$xi2=280,$\sum_{i=1}^{7}$yi2=45 309,$\sum_{i=1}^{7}$xiyi=3 487,$\overline{x}$=6,$\overline{y}$=$\frac{559}{7}$,
∴$\stackrel{∧}$=$\frac{133}{28}$=4.75,$\stackrel{∧}{a}$=$\frac{559}{7}$-6×4.75=$\frac{719}{14}$
∴回歸直線方程為$\stackrel{∧}{y}$=4.75x+$\frac{719}{14}$.
(3)當(dāng)x=20時(shí),$\stackrel{∧}{y}$=4.75×20+$\frac{719}{14}$≈146.因此本周內(nèi)某天的銷售為20件時(shí),估計(jì)這天的純收入大約為146元.

點(diǎn)評(píng) 本題考查線性回歸方程的求法和應(yīng)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)=$\frac{{x}^{2}+(1-m)x+1}{{e}^{x}}$.
(I)求f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù)x1,x2∈[0,1],使得不等式2f(x1)<f(x2)成立,若存在,求出m的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.和-$\frac{7π}{8}$終邊相同的角為$-\frac{7π}{8}+2kπ,k∈Z$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.由1,2,3三個(gè)數(shù)字組成數(shù)字允許重復(fù)的三位數(shù),則百位和十位上的數(shù)字均不小于個(gè)位數(shù)字的概率為( 。
A.$\frac{4}{27}$B.$\frac{1}{3}$C.$\frac{13}{27}$D.$\frac{14}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,|AB|=4,|AC|=3,若D為線段BC的中點(diǎn),且滿足$\overrightarrow{DP}$•$\overrightarrow{BC}$=0,則$\overrightarrow{AP}•({\overrightarrow{AB}-\overrightarrow{AC}})$的值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知圓C方程為(x-1)2+y2=r2,若p:1≤r≤3;q:圓C上至多有3個(gè)點(diǎn)到直線x-$\sqrt{3}$y+3=0的距離為1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)點(diǎn)P對(duì)應(yīng)的復(fù)數(shù)為-3-3i,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)可能為( 。
A.(3,$\frac{3}{4}$π)B.(3,$\frac{5}{4}$π)C.(3$\sqrt{2}$,$\frac{3}{4}$π)D.(3$\sqrt{2}$,$\frac{5}{4}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=ln(-x)+3x,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知數(shù)列{an}滿足${a_1}=0,{a_{n+1}}=\frac{{{a_n}-\sqrt{3}}}{{1+\sqrt{3}{a_n}}}$,則a6=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案