精英家教網 > 高中數學 > 題目詳情
5.榫卯(sǔn mǎo)是古代中國建筑、家具及其它器械的主要結構方式,是在兩個構件上采用凹凸部位相結合的一種連接方式,凸出部分叫做“榫頭”.某“榫頭”的三視圖及其部分尺寸如圖所示,則該“榫頭”體積等于( 。
A.12B.13C.14D.15

分析 如圖所示,該幾何體為一個3×2×3的長方體,去掉四個角(棱長為1的正方體)余下的幾何體.

解答 解:如圖所示,該幾何體為一個3×2×3的長方體,
去掉四個角(棱長為1的正方體)余下的幾何體.
∴該“榫頭”體積=3×2×3-4×13=14.
故選:C.

點評 本題考查了長方體與正方體的三視圖、體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.我國古代數學名著《九章算術》中“開立圓術”曰:置積尺數,以十六乘之,九而一,所得開立方除之,即立圓徑.“開立圓術”相當于給出了已知球的體積V,求其直徑d的一個近似公式$d≈\root{3}{{\frac{16}{3}V}}$,人們還用過一些類似的近似公式,根據π=3.14159…判斷,下列近似公式中最精確的一個是( 。
A.$d≈\root{3}{{\frac{60}{31}V}}$B.$d≈\root{3}{2V}$C.$d≈\root{3}{{\frac{15}{8}V}}$D.$d≈\root{3}{{\frac{21}{11}V}}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.在△ABC中,角A,B,C所對的邊分別為a,b,c.已知sin$\frac{C}{2}$=$\frac{\sqrt{10}}{4}$.
(1)求cos(C+$\frac{π}{6}$)的值;
(2)若△ABC的面積是$\frac{3\sqrt{15}}{4}$,且sin2A+sin2B=$\frac{13}{16}$sin2C.求c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.在△ABC中,∠BAC=120°,AC=2AB=4,點D在BC上,且AD=BD,則AD=$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,輸出n的值為( 。
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是( 。
A.16B.32C.$\frac{64}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知定義在R上偶函數f(x)滿足f(x+2)•f(x)=4,且f(x)>0,則f(2017)=2.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.執(zhí)行如圖所示的程序框圖,輸出的所有值之和是37.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數f(x)=$\sqrt{3}$sinx-cosx,x∈R.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)求f(x)的單調增區(qū)間;
(Ⅲ)求f(x)在[0,π]上的最小值.

查看答案和解析>>

同步練習冊答案