【題目】已知二次函數(shù)g(x)=mx2﹣2mx+n+1(m>0)在區(qū)間[0,3]上有最大值4,最小值0.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)設(shè)f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,求k的取值范圍.
【答案】解:(Ⅰ)∵g(x)=m(x﹣1)2﹣m+1+n
∴函數(shù)g(x)的圖象的對稱軸方程為x=1
∵m>0依題意得 ,
即 ,
解得
∴g(x)=x2﹣2x+1,
(Ⅱ)∵
∴ ,
∵f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,
即 在x∈[﹣3,3]時恒成立
∴ 在x∈[﹣3,3]時恒成立
只需
令 ,
由x∈[﹣3,3]得
設(shè)h(t)=t2﹣4t+1
∵h(t)=t2﹣4t+1
=(t﹣2)2﹣3
∴函數(shù)h(x)的圖象的對稱軸方程為t=2
當(dāng)t=8時,取得最大值33.
∴k≥h(t)max=h(8)=33
∴k的取值范圍為[33,+∞)
【解析】(Ⅰ)由題意得方程組解出即可,(Ⅱ)將f(x)進行變形,通過換元求出函數(shù)h(t)的最值,從而求出k的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)ω>0,函數(shù)y=sin(ωx+ )+2的圖象向右平移 個單位后與原圖象重合,則ω的最小值是( )
A.
B.
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù) (m為實數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為( )
A.a<b<c
B.b<a<c
C.c<a<b
D.a<c<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
設(shè)函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍;
(3)已知當(dāng)恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinθ,1), =(1,cosθ),﹣ <θ . (Ⅰ)若 ⊥ ,求tanθ的值.
(Ⅱ)求| + |的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點,直線AF的斜率為 ,O為坐標(biāo)原點.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點A的直線l與E相交于P,Q兩點,當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品最近30天的價格f(t)(元)與時間t滿足關(guān)系式:f(t)= ,且知銷售量g(t)與時間t滿足關(guān)系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)當(dāng)m=3時,求集合A∩B,A∪B;
(2)若BA,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中實數(shù)為常數(shù)且.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍及所有極值之和;
(III)在(II)的條件下,記分別為函數(shù)的極大值點和極小值點,
求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com