如圖,在直角梯形ABEF中,,,講DCEF沿CD折起,使得,得到一個幾何體,

(1)求證:平面ADF;

(2)求證:AF平面ABCD;

(3)求三棱錐E-BCD的體積.

 

(1)見解析(2)見解析(3)

【解析】

試題分析:

(1)要證明平面ADF,可以通過BCE面與ADF面平行來得到線面平行,在折疊過程中,會保持BC//AD,CE//DF,故兩平面內兩條相交的直線相互平行,故可以證明BCE面與ADF面平行來得到線面平行

(2)要證明AF垂直于ABCD面,只需要證明AF與ABCD面內兩條相交的直線AD與DC垂直即可,利用三角形ADF的正弦定理,可以求出AF長度,加以勾股定理就可以證明AF與AD垂直,DC垂直于DF和AD,所以DC垂直于面AFD,進而也是垂直于AF的.

(3)求三棱錐E-BCD的體積,由(1)(2)可以知道面BCE與面ADF平行且DC垂直于面ADF,進而有DC垂直于面BCE,所以求三棱錐的體積可以以三角形BCE底面,DC為高,則高長度已知,底面三角形面積可以利用EC,BC及其兩邊夾角的正弦值來求的.

試題解析:

(1)由已知條件可知,折疊之后平行關系不變,又因為平面

平面,所以//平面

同理//平面. 2分

平面,

平面//平面.

平面,

//平面. 4分

(2)由于

,即

. 6分

平面,

平面. 8分

(3)法一:平面,

. 10分

,.

12分

14分

法二:取中點,連接.

由(2)易知⊥平面,又平面//平面,

⊥平面. 10分

,.

, 12分

.

. 14分

考點:線面平行面面平行線面垂直三棱錐體積

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年廣東省湛江市高三高考模擬測試二理科數(shù)學試卷(解析版) 題型:選擇題

下列命題正確的是( )

A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行

B.若一個平面內有三個點到另一個平面的距離相等,則這兩個平面平行

C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行

D.若兩個平面都垂直于第三個平面,則這兩個平面平行

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省汕頭市高三3月高考模擬考試文科試卷(解析版) 題型:選擇題

如圖,在中,,若,,則( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省梅州市高三3月總復習質檢理科數(shù)學試卷(解析版) 題型:填空題

函數(shù),則f(f(0))的值為_________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省梅州市高三3月總復習質檢理科數(shù)學試卷(解析版) 題型:選擇題

在復平面內,復數(shù)的對應點位于( )

A.第一象限 B.第二象限 C.第三象限角 D.第四象限

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省梅州市高三3月總復習質檢文科數(shù)學試卷(解析版) 題型:填空題

已知雙曲線C的焦點、實軸端點恰好是橢圓的長軸的端點、焦點,則雙曲線C的方程為_______.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省梅州市高三3月總復習質檢文科數(shù)學試卷(解析版) 題型:選擇題

已知某幾何體的三視圖如圖所示,則該幾何體的體積是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省揭陽市高三4月第二次模擬考試理科數(shù)學試卷(解析版) 題型:填空題

的展開式中的系數(shù)為 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省揭陽市高三3月第一次模擬考試理科數(shù)學試卷(解析版) 題型:填空題

已知向量滿足,,且,則的夾角為 .

 

查看答案和解析>>

同步練習冊答案