設(shè)a>0,x∈[-1,1]時,函數(shù)y=-x2-ax+b有最小值-1,最大值1,求使函數(shù)取得最小值和最大值時相應(yīng)的x值.
考點:二次函數(shù)的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意判斷二次函數(shù)圖象的開口方向及對稱軸,并由對稱軸進(jìn)行討論.
解答: 解:函數(shù)y=-x2-ax+b的圖象開口向下,對稱軸為x=-
a
2
<0,
①當(dāng)-
a
2
≤-1,即a≥2時,
函數(shù)y=-x2-ax+b在[-1,1]上單調(diào)上單調(diào)遞減,
函數(shù)y=-x2-ax+b在x=-1時取得最大值,在x=1時取得最小值.
①當(dāng)-
a
2
>-1,即0<a<2時,
函數(shù)y=-x2-ax+b在x=-
a
2
時取得最大值,在x=1時取得最小值.
點評:本題考查了二次函數(shù)的最值問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在公差為4的正項等差數(shù)列中,a3與2的算術(shù)平均值等于S3與2的幾何平均值,其中S3 表示數(shù)列的前三項和,則a10為( 。
A、38B、40C、42D、44

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求雙曲線9y2-16x2=144的實半軸長,虛半軸長,焦點坐標(biāo),離心率,漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
a
x
-3lnx.
(1)a=2時,求f(x)的單調(diào)區(qū)間和最小值;
(2)若a≥0且f(x)在[1,2]上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,an>0,
an
-
an+1
=2
anan+1
(n∈N*),設(shè)bn=
1
an
(n∈N*),
(1)求證數(shù)列{bn}是等差數(shù)列,并求bn;
(2)設(shè)Tn=
1
an+1bn+1
+
1
an+2bn+2
+…+
1
a2nb2n
,且Tn為數(shù)列{cn}的前n項和,求Tn和cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)如圖,將1,2,3填入3×3的方格中,要求每行、每列都沒有重復(fù)數(shù)字,右面是一種填法,則不同的填寫方法共有幾種?(用數(shù)字作答).
(2)有4張分別標(biāo)有數(shù)字1,2,3,4的紅色卡片和4張分別標(biāo)有數(shù)字1,2,3,4的藍(lán)色卡片,從這8張卡片中取出4張卡片排成一行.如果取出的4張卡片所標(biāo)的數(shù)字之和等于10,則不同的排法共有
 
種?(用數(shù)字作答).
(3)用1,2,3,4,5,6組成六位數(shù)(沒有重復(fù)數(shù)字),要求任何相鄰兩個數(shù)字的奇偶性不同,且1和2相鄰,這樣的六位數(shù)的個數(shù)是多少?(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x,在x∈[0,1]時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-4ax2+4ax-4a-a2在[0,1]內(nèi)有最大值-5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(1,2),
c
=(3,2).
(Ⅰ)求3
a
+2
b
-
c
的坐標(biāo);
(Ⅱ)求
a
+
b
c
夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案