A. | 若函數(shù)f(x)是定義在R上的偶函數(shù),則b=±1 | |
B. | 若函數(shù)f(x)是定義在R上的奇函數(shù),則b=1 | |
C. | 若b=-1,則函數(shù)f(x)是定義在R上的增函數(shù) | |
D. | 若b=-1,則函數(shù)f(x)是定義在R上的減函數(shù) |
分析 由偶函數(shù)的定義,可得f(-x)=f(x),化簡整理,可得b=0,即可判斷A;
由奇函數(shù)的定義,可得f(-x)=-f(x),化簡整理,可得b=±1,即可判斷B;
若b=-1,由換元法和對數(shù)函數(shù)的單調(diào)性,復(fù)合函數(shù)的單調(diào)性,即可判斷C,D.
解答 解:對于A,若函數(shù)f(x)是定義在R上的偶函數(shù),
可得f(-x)=f(x),即為log${\;}_{\frac{1}{2}}}$($\sqrt{{x^2}+1}$-bx)=log${\;}_{\frac{1}{2}}}$($\sqrt{{x^2}+1}$+bx),
即有$\sqrt{{x^2}+1}$-bx=$\sqrt{{x^2}+1}$+bx,解得b=0,故A錯誤;
對于B,若函數(shù)f(x)是定義在R上的奇函數(shù),
可得f(-x)=-f(x),即為log${\;}_{\frac{1}{2}}}$($\sqrt{{x^2}+1}$-bx)=-log${\;}_{\frac{1}{2}}}$($\sqrt{{x^2}+1}$+bx),
即有$\sqrt{{x^2}+1}$-bx=($\sqrt{{x^2}+1}$+bx)-1,即有x2+1-b2x2=1,
解得b=±1,故B錯誤;
對于C,若b=-1,則f(x)=log${\;}_{\frac{1}{2}}}$($\sqrt{{x^2}+1}$-x)=log${\;}_{\frac{1}{2}}}$($\sqrt{{x^2}+1}$+x)-1
=log2($\sqrt{{x^2}+1}$+x),由t=$\sqrt{{x^2}+1}$+x在x≥0遞增,函數(shù)f(x)為奇函數(shù),
可得f(x)在R上遞增,故C正確,D錯誤.
故選:C.
點評 本題考查對數(shù)函數(shù)的單調(diào)性,函數(shù)的奇偶性的運用,注意運用定義法,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{{4\sqrt{2}}}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | r=1,m為偶數(shù) | B. | r=1,m為奇數(shù) | C. | r=-1,m為偶數(shù) | D. | r=-1,m為奇數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{7}$ | B. | $\frac{4}{9}$ | C. | $\frac{9}{20}$ | D. | $\frac{5}{11}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com