15.若數(shù)列{an},{bn}的通項(xiàng)公式分別是an=(-1)2017•a,bn=2+$\frac{{{{(-1)}^{n+2018}}}}{n}且{a_n}<{b_n}$對任意n∈N*恒成立,則常數(shù)a的取值范圍是[-2,1).

分析 討論n取奇數(shù)和偶數(shù)時(shí),利用不等式恒成立,即可確定a的取值范圍.

解答 解:∵an=(-1)2017•a,bn=2+$\frac{{{{(-1)}^{n+2018}}}}{n}且{a_n}<{b_n}$對任意n∈N*恒成立,
∴(-1)n+2017•a<2+$\frac{(-1)^{n+2018}}{n}$,
若n為偶數(shù),則不等式等價(jià)為-a<2+$\frac{1}{n}$,即-a≤2,即a≥-2.
若n為奇數(shù),則不等式等價(jià)為a<2-$\frac{1}{n}$,即a<1,
綜上:-2≤a<1,
即常數(shù)a的取值范圍是[-2,1),
故答案為:[-2,1),

點(diǎn)評 本題主要考查了數(shù)列與不等式的綜合應(yīng)用,考查了學(xué)生的計(jì)算能力和對數(shù)列的綜合掌握,解題時(shí)注意整體思想和轉(zhuǎn)化思想的運(yùn)用,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)已知等比數(shù)列{an}中,a1=2且a1+a2=6.求數(shù)列{an}的前n項(xiàng)和Sn的值;
(2)已知tanθ=3,求$\frac{{2{{cos}^2}\frac{θ}{2}+sinθ-1}}{sinθ-cosθ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=(x2+2)lnx,g(x)=2x2+ax,a∈R
(1)證明:f(x)在(1,+∞)上是增函數(shù);
(2)設(shè)F(x)=f(x)-g(x),當(dāng)x∈[1,+∞)時(shí),F(xiàn)(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.把復(fù)數(shù)z的共軛復(fù)數(shù)記作$\overline z$,已知$(1+2i)\overline z=4+3i$,求z及$\frac{z}{\overline z}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知△ABC中,頂點(diǎn)A(2,1),B(-2,0),∠C的平分線所在直線的方程為x+y=0.
(1)求頂點(diǎn)C的坐標(biāo);
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f′(x)是奇函數(shù)y=f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時(shí),xf′(x)+f(x)>0,則使得f(x)>0成立的x的取值范圍是(  )
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知sin(π-α)=log27$\frac{1}{9},且α∈(-\frac{π}{2},0)$,則tanα=$-\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=sinx-$\frac{2}{5π}$x零點(diǎn)的個(gè)數(shù)是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,$∠A=\frac{2π}{3}$,$a=\sqrt{3}c$,則$\frac{a}$=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案