【題目】已知橢圓經(jīng)過點,且離心率為.
(I)求橢圓的方程;
(Ⅱ)過橢圓的右頂點做相互垂直的兩條直線,,分別交橢圓于、(、異于點),問直線是否通過定點?若過定點,求出定點坐標(biāo);若不過定點,請說明理由.
【答案】(Ⅰ).(Ⅱ)答案見解析.
【解析】分析:(Ⅰ)由題意計算可得,在橢圓方程為;
(Ⅱ)結(jié)合(Ⅰ)的結(jié)論可知,據(jù)此分類討論直線斜率存在和斜率不存在兩種情況可得直線通過定點.
詳解:(Ⅰ)由題意,得,解得,.
所以橢圓的方程是.
(Ⅱ)由(Ⅰ)得,
當(dāng)直線的斜率不存在時,
直線的方程設(shè)為.,
由得,,解得或(舍去).
當(dāng)直線的斜率存在時,設(shè)直線的方程設(shè)為,設(shè),
聯(lián)立消去得,
則有, ,
又,
由得,,
,,
,
即或 ,
若則直線的方程設(shè)為,過點,不在橢圓內(nèi),與題意不符.
若,代入到判別式中,判別式恒大于0,則滿足有兩個交點.
則直線的方程設(shè)為,過點得.
綜上,直線通過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個變量關(guān)于的回歸方程模型,其對應(yīng)的數(shù)值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)請用相關(guān)系數(shù)加以說明與之間存在線性相關(guān)關(guān)系(當(dāng)時,說明與之間具有線性相關(guān)關(guān)系);
(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預(yù)測當(dāng)時,對應(yīng)的值為多少(精確到).
附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,,相關(guān)系數(shù)公式為:.
參考數(shù)據(jù):
,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù)a使方程sinx+ cosx=a在閉區(qū)間[0,2π]上恰有三個解x1 , x2 , x3 , 則x1+x2+x3= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,,且 , ,分別為△的三邊所對的角.
(Ⅰ)求角的大小;
(Ⅱ)若,,成等比數(shù)列,且, 求邊c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備M生產(chǎn)某種零件的性能,從設(shè)備M生產(chǎn)零件的流水線上隨機(jī)抽取100件零件最為樣本,測量其直徑后,整理得到下表:
直徑/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計算,樣本的平均值μ=65,標(biāo)準(zhǔn)差=2.2,以頻率值作為概率的估計值.
(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為X,并根據(jù)以下不等式進(jìn)行評判(p表示相應(yīng)事件的頻率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙,若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為。嚺袛嘣O(shè)備M的性能等級.
(2)將直徑小于等于μ﹣2σ或直徑大于μ+2σ的零件認(rèn)為是次品
(i)從設(shè)備M的生產(chǎn)流水線上隨意抽取2件零件,計算其中次品個數(shù)Y的數(shù)學(xué)期望EY;
(ii)從樣本中隨意抽取2件零件,計算其中次品個數(shù)Z的數(shù)學(xué)期望EZ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (, 為自然對數(shù)的底數(shù)).
(1)求函數(shù)的極值;
(2)當(dāng)時,若直線與曲線沒有公共點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線方程為.
(1)若函數(shù)在時有極值,求表達(dá)式;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=3x.
(1)若f(x)=8,求x的值;
(2)對于任意的x∈[0,2],[f(x)-3]3x+13-m≥0恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com