已知直角坐標平面內(nèi)點A(x,y)到點F1(-1,0)與點F2(1,0)的距離之和為4.
(1)試求點A的軌跡M的方程;
(2)若斜率為
1
2
的直線l與軌跡M交于C、D兩點,點P(1,  
3
2
)
為軌跡M上一點,記直線PC的斜率為k1,直線PD的斜率為k2,試問:k1+k2是否為定值?請證明你的結(jié)論.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由題知|AF1|+|AF2|=4,|F1F2|=2,則|AF1|+|AF2|>|F1F2|,由橢圓的定義知點A軌跡M是橢圓其中a=2,c=1,從而能求出橢圓M的方程.
(2)設直線l的方程為:y=
1
2
x+b
,C(x1,y1),D(x2,y2),聯(lián)立直線l的方程與橢圓方程,得x2+bx+b2-3=0,當△>0時,即b2-4(b2-3)>0,直線l與橢圓有兩交點,由韋達定理,得:
x1+x2=-b
x1x2=b2-3
,由此能夠得到k1+k2為定值.
解答: 解:(1)由題知|AF1|+|AF2|=4,|F1F2|=2,則|AF1|+|AF2|>|F1F2|
由橢圓的定義知點A軌跡M是橢圓,其中a=2,c=1.
因為b2=a2-c2=3,
所以,軌跡M的方程為
x2
4
+
y2
3
=1

(2)設直線l的方程為:y=
1
2
x+b
,C(x1,y1),D(x2,y2
聯(lián)立直線l'的方程與橢圓方程,消去y可得:3x2+4(
1
2
x+b)2=12
,
化簡得:x2+bx+b2-3=0
當△>0時,即,b2-4(b2-3)>0,也即|b|<2時,直線l'與橢圓有兩交點,
由韋達定理得:
x1+x2=-b
x1x2=b2-3
,
所以,k1=
y1-
3
2
x1-1
=
1
2
x1+b-
3
2
x1-1
,k2=
y2-
3
2
x2-1
=
1
2
x2+b-
3
2
x2-1

則k1+k2=
1
2
x1+b-
3
2
x1-1
+
1
2
x2+b-
3
2
x2-1
=
x1x2+(b-2)(x1+x2)+3-2b
(x1-1)(x2-1)
=
b2-3+(b-2)(-b)+3-2b
(x1-1)(x2-1)
=0

所以,k1+k2為定值.
點評:本題考查直線與橢圓的位置關(guān)系的綜合應用,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強,難度大,有一定的探索性,對數(shù)學思維能力要求較高.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1,l2,過橢圓C的右焦點F作直線l,使l⊥l1,又l與l2交于P點,設l與橢圓C的兩個交點由上至下依次為A,B.
(1)若l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程及離心率;
(2)求
FA
AP
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P與平面上兩定點A(-
3
,0),B(
3
,0)
連線的斜率的積為定值-
1
3

(1)求點P的軌跡方程;
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別為橢圓
x2
a2
+
y2
a2-1
=1(a>1)的左、右兩個焦點,一條直線l經(jīng)過點F1與橢圓交于A、B兩點,且△ABF2的周長為8.
(1)求實數(shù)a的值;
(2)若l的傾斜角為
π
4
,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點,一個焦點為F(0,
2
)
,且長軸長與短軸長的比為
2
:1

(1)求橢圓C的方程;
(2)若橢圓C上在第一象限內(nèi)的一點P的橫坐標為1,過點P作傾斜角互補的兩條不同的直線PA,PB分別交橢圓C于另外兩點A,B.求證:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,拋物線的方程為y2=2px(p>0).
(1)當p=4時,求該拋物線上縱坐標為2的點到其焦點F的距離;
(2)已知該拋物線上一點P的縱坐標為t(t>0),過P作兩條直線分別交拋物線與A(x1,y1)、B(x2,y2),當PA與PB的斜率存在且傾斜角互補時,求證:
y1+y2
t
為定值;并用常數(shù)p、t表示直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,F(xiàn)是拋物線C:y2=2px(p>0)的焦點,圓Q過O點與F點,且圓心Q到拋物線C的準線的距離為
3
2

(1)求拋物線C的方程;
(2)過F作傾斜角為60°的直線L,交曲線C于A,B兩點,求△AOB的面積;
(3)已知拋物線上一點M(4,4),過點M作拋物線的兩條弦MD和ME,且MD⊥ME,判斷:直線DE是否過定點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
y≥1
y≤2x-1
x+y≤4
,則z=
y
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學在研究函數(shù)f(x)=
ax
1+|x|
(x∈R,a>0)
時,分別給出下面幾個結(jié)論:
①等式f(-x)+f(x)=0對x∈R恒成立;
②函數(shù)f(x)的值域為[-a,a];
③函數(shù)f(x)為R的單調(diào)函數(shù);
④若x1≠x2,則一定有f(x1)≠f(x2);
⑤函數(shù)g(x)=f(x)-ax在R上有三個零點.
其中正確結(jié)論的序號有
 
.(請將你認為正確的結(jié)論的序號都填上)

查看答案和解析>>

同步練習冊答案