考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)的定義域及其求法,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)
f(x)=log(-x2-2x)有意義,則必須-x
2-2x>0,解得即可得到函數(shù)的定義域;變形-x
2-2x=-(x+1)2+1令u(x)=-(x+1)
2+1,利用二次函數(shù)和復(fù)合函數(shù)的單調(diào)性即可得出單調(diào)區(qū)間;利用單調(diào)性即可得出函數(shù)的值域.
解答:
解:①要使函數(shù)
f(x)=log(-x2-2x)有意義,
則必須-x
2-2x>0,化為x
2+2x<0,
解得-2<x<0.
∴此函數(shù)的定義域為(-2,0).
②函數(shù)
f(x)=log(-x2-2x)=log
[-(x+1)2+1],
令u(x)=-(x+1)
2+1,
當(dāng)x∈(-2,-1]時,函數(shù)u(x)單調(diào)遞增,此時函數(shù)y=log
(-x
2-2x)單調(diào)遞減;
當(dāng)x∈(-1,0)時,函數(shù)u(x)單調(diào)遞減,此時函數(shù)y=log
(-x
2-2x)單調(diào)遞增.
∴函數(shù)y=log
(-x
2-2x)單調(diào)遞減區(qū)間是(-2,-1],單調(diào)遞增區(qū)間是[-1,0).
③由②可知:當(dāng)x=-1時,函數(shù)y=log
(-x
2-2x)取得最小值,為log
(-1+2)=0.
∴函數(shù)
f(x)=log(-x2-2x)的值域為[0,+∞).
點評:本題考查了對數(shù)函數(shù)、復(fù)合函數(shù)的定義域、單調(diào)區(qū)間及其值域,屬于中檔題.