【題目】為了調查民眾對國家實行“新農村建設”政策的態(tài)度,現通過網絡問卷隨機調查了年齡在20周歲至80周歲的100人,他們年齡頻數分布和支持“新農村建設”人數如下表:
年齡 | ||||||
頻數 | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新農村建設” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根據上述統(tǒng)計數據填下面的列聯(lián)表,并判斷是否有的把握認為以50歲為分界點對“新農村建設”政策的支持度有差異;
年齡低于50歲的人數 | 年齡不低于50歲的人數 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)為了進一步推動“新農村建設”政策的實施,中央電視臺某節(jié)目對此進行了專題報道,并在節(jié)目最后利用隨機撥號的形式在全國范圍內選出4名幸運觀眾(假設年齡均在20周歲至80周歲內),給予適當的獎勵.若以頻率估計概率,記選出4名幸運觀眾中支持“新農村建設”人數為,試求隨機變量的分布列和數學期望.
參考數據:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
科目:高中數學 來源: 題型:
【題目】為積極響應國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議,為調查該校學生每周平均體育運動時間的情況,從高一高二(非畢業(yè)年級)與高三(畢業(yè)年級)共三個年級學生中按照的比例分層抽樣,收集位學生每周平均體育運動時間的樣本數據(單位:小時),得到如圖所示的頻率分布直方圖.(已知高一年級共有名學生)
(1)據圖估計該校學生每周平均體育運動時間,并估計高一年級每周平均體育運動時間不足小時的人數;
(2)規(guī)定每周平均體育運動時間不少于小時記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數據中,有位高三學生的每周平均體育運動時間不少于小時,請完成下列列聯(lián)表,并判斷是否有的把握認為“該校學生的每周平均體育運動時間是否優(yōu)秀與畢業(yè)年級有關”?
非畢業(yè)年級 | 畢業(yè)年級 | 合計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
合計 |
附:.
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數,使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=cos(2x)的圖象向左平移個單位長度后,得到函數g(x)的圖象,則下列結論中正確的是_____.(填所有正確結論的序號)
①g(x)的最小正周期為4π;
②g(x)在區(qū)間[0,]上單調遞減;
③g(x)圖象的一條對稱軸為x;
④g(x)圖象的一個對稱中心為(,0).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy內,點()在橢圓E:(a>0,b>0),橢圓E的離心率為,直線l過左焦點F且與橢圓E交于A、B兩點
(1)求橢圓E的標準方程;
(2)若動直線l與x軸不重合,在x軸上是否存在定點P,使得PF始終平分∠APB?若存在,請求出點P的坐標:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com