12.公差為2的等差數(shù)列{an}的前n項(xiàng)和為Sn.若S3=12,則a3=(  )
A.4B.6C.8D.14

分析 利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.

解答 解:∵S3=12,∴3a1+$\frac{3×2}{2}×2$=12,解得a1=2.
則a3=2+2×2=6.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.f(x)=alnx+x2-b(x-1)-1,若對(duì)$?x∈[\frac{1}{e},+∞)$,f(x)≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.$a≤{e}+\frac{1}{e}-2$B.a<2C.$\frac{2}{e}≤a<2$D.$a≤\frac{2}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程$\left\{\begin{array}{l}x=1+cosϕ\\ y=sinϕ\end{array}$(ϕ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)直線(xiàn)l的極坐標(biāo)方程是$2ρsin(θ+\frac{π}{3})=3\sqrt{3}$,射線(xiàn)$\sqrt{3}$x-y=0(x≥0)與圓C的交點(diǎn)為O,P,與直線(xiàn)l的交點(diǎn)為Q,求線(xiàn)段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.網(wǎng)購(gòu)是當(dāng)前民眾購(gòu)物的新方式,某公司為改進(jìn)營(yíng)銷(xiāo)方式,隨機(jī)調(diào)查了100名市民,統(tǒng)計(jì)其周平均網(wǎng)購(gòu)的次數(shù),并整理得到如下的頻數(shù)分布直方圖.這100名市民中,年齡不超過(guò)40歲的有65人將所抽樣本中周平均網(wǎng)購(gòu)次數(shù)不小于4次的市民稱(chēng)為網(wǎng)購(gòu)迷,且已知其中有5名市民的年齡超過(guò)40歲.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為網(wǎng)購(gòu)迷與年齡不超過(guò)40歲有關(guān)?
網(wǎng)購(gòu)迷非網(wǎng)購(gòu)迷合計(jì)
年齡不超過(guò)40歲
年齡超過(guò)40歲
合計(jì)
(2)若從網(wǎng)購(gòu)迷中任意選取2名,求其中年齡丑啊過(guò)40歲的市民人數(shù)ξ的分布列與期望.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;
P(K2≥k00.150.100.050.01
k02.0722.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.襄陽(yáng)農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2326322616
襄陽(yáng)農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線(xiàn)性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日這兩組數(shù)據(jù),情根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線(xiàn)性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1顆,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,試問(wèn)(2)中所得的線(xiàn)性回歸方程是否可靠?
注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$•$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx-kx+k.
(Ⅰ)若f(x)≥0有唯一解,求實(shí)數(shù)k的值;
(Ⅱ)證明:當(dāng)a≤1時(shí),x(f(x)+kx-k)<ex-ax2-1.
(附:ln2≈0.69,ln3≈1.10,${e^{\frac{3}{2}}}≈4.48$,e2≈7.39)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.從3名男同學(xué)和2名女同學(xué)中任選2名參加體能測(cè)試,則恰有1名男同學(xué)參加體能測(cè)試的概率為$\frac{3}{5}$.(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知(x-1)(ax+1)6展開(kāi)式中含x2項(xiàng)的系數(shù)為0,則正實(shí)數(shù)a=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為棱AA1,B1C1,C1D1,DD1的中點(diǎn),則下列直線(xiàn)中與直線(xiàn)EF相交的是( 。
A.直線(xiàn)CC1B.直線(xiàn)C1D1C.直線(xiàn)HC1D.直線(xiàn)GH

查看答案和解析>>

同步練習(xí)冊(cè)答案