8.已知定義在[-1,1]上的函數(shù)f(x)值域?yàn)閇-2,0],則y=f(cosx)的值域?yàn)閇-2,0].

分析 判斷出cosx∈[-1,1],從而求出f(cosx)的值域即可.

解答 解:∵f(x)的定義域是[-1,1],值域是[-2,0],
而cosx∈[-1,1],
故f(cosx)的值域是[-2,0],
故答案為:[-2,0].

點(diǎn)評(píng) 本題考查了抽象函數(shù)的定義域、值域問(wèn)題,考查y=cosx的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在直三棱柱ABC-A1B1C1中,底面ABC為邊長(zhǎng)為2的正三角形,D是棱A1C1的中點(diǎn),CC1=h(h>0).
(1)證明:BC1∥平面AB1D;
(2)若直線BC1與平在ABB1A1所成角的大小為$\frac{π}{6}$,求h的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.隨機(jī)變量$ξ~B(n,\frac{1}{3})$,且E(3ξ+2)=8,則n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.用斜二測(cè)畫法畫一個(gè)水平放置的平面圖形的直觀圖為如圖所示的等腰三角形,其中OA=OB=1,則原平面圖形的面積為( 。
A.1B.$\sqrt{2}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知{an}數(shù)列的首項(xiàng)為a1,滿足${a_n}+{a_{n-1}}=n•{(-1)^{\frac{n(n+1)}{2}}}(n∈N,n≥2)$,S2017=-1006-b,且a1b>0,則$\frac{1}{a_1}+\frac{4}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線l在平面α內(nèi),直線m平行于平面α,且與直線l異面,動(dòng)點(diǎn)P在平面α上,且到直線l、m距離相等,則點(diǎn)P的軌跡為(  )
A.直線B.橢圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(m,1)與向量$\overrightarrow$=(4,m)共線且方向相同,則m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=3,$AD=2\sqrt{2}$,∠ABC=45°,P點(diǎn)在底面ABCD內(nèi)的射影E在線段AB上,且PE=2,BE=2EA,F(xiàn)為AD的中點(diǎn),M在線段CD上,且CM=λCD.
(1)當(dāng)$λ=\frac{2}{3}$時(shí),證明:平面PFM⊥平面PAB;
(2)當(dāng)$λ=\frac{1}{3}$時(shí),求平面PAM與平面ABCD所成的二面角的正弦值及四棱錐P-ABCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.公比為3的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a1a5=9,則log3a6=(  )
A.7B.6C.5D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案