16.已知等差數(shù)列{an}滿足a3=7,a5+a7=26,若${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$(n∈N*),則數(shù)列{bn}的前10項(xiàng)和S10=$\frac{10}{69}$.

分析 利用等差中項(xiàng)及a5+a7=26可知a6=13,進(jìn)而可知公差d=$\frac{{a}_{6}-{a}_{3}}{6-3}$=2,從而an=2n+1,進(jìn)而利用裂項(xiàng)相消法計(jì)算即得結(jié)論.

解答 解:因?yàn)閿?shù)列{an}是等差數(shù)列,
所以2a6=a5+a7=26,即a6=13,
又因?yàn)閍3=7,
所以公差d=$\frac{{a}_{6}-{a}_{3}}{6-3}$=2,
所以an=a3+(n-3)d=2n+1,
所以${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{2n+1}$•$\frac{1}{2n+3}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$)(n∈N*),
所以數(shù)列{bn}的前10項(xiàng)和S10=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{21}$-$\frac{1}{23}$)=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{23}$)=$\frac{10}{69}$,
故答案為:$\frac{10}{69}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查裂項(xiàng)相消法求和,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖.在△ABC中,D是BC的中點(diǎn),E、F是AD上的兩個(gè)三等分點(diǎn),$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BF}$•$\overrightarrow{CF}$=-1,則$\overrightarrow{BE}$•$\overrightarrow{CE}$的值是(  )
A.4B.8C.$\frac{7}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$sinα=\frac{{\sqrt{10}}}{10}$,$sin(α-β)=-\frac{{\sqrt{5}}}{5}$,$α,β∈(0,\frac{π}{2})$,則β=(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知圓C和x軸相切,圓心在第三象限并在直線3x-y=0上,且被直線y=x截得的弦長(zhǎng)為$2\sqrt{7}$
(1)求圓C的方程.
(2)已知直線l:ax+y+6=0與圓C沒有公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,已知sin(A+B)=2sinAcosB,那么△ABC一定是( 。
A.等腰直角三角形B.直角三角形C.等腰三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知i是虛數(shù)單位,復(fù)數(shù)z滿足z=i(i-1),則z的虛部是( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{2x(x<0)}\end{array}\right.$若f(a)=10,那么a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知圓${C_1}:{x^2}+{y^2}+4x+3y+2=0$與圓${C_2}:{x^2}+{y^2}+2x+3y+1=0$,則圓C1與圓C2的位置關(guān)系為( 。
A.外切B.相離C.相交D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,圓O:x2+y2=4與坐標(biāo)軸交于點(diǎn)A,B,C.設(shè)點(diǎn)M是圓上任意一點(diǎn)(不在坐標(biāo)軸上),直線CM交x軸于點(diǎn)D,直線BM交直線AC于點(diǎn)N.
(1)當(dāng)D點(diǎn)坐標(biāo)為(2$\sqrt{3}$,0)時(shí),求弦CM的長(zhǎng);
(2)求證:2kND-kMB是與CM斜率k無(wú)關(guān)的定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案