17.過雙曲線${x^2}-\frac{y^2}{2}=1$的右焦點(diǎn)作直線l交雙曲線于A、B兩點(diǎn),若|AB|=4,則滿足條件的直線l有( 。
A.4條B.3條C.2條D.無數(shù)條

分析 雙曲線的兩個頂點(diǎn)之間的距離是2,小于4,過拋物線的焦點(diǎn)一定有兩條直線使得交點(diǎn)之間的距離等于4,當(dāng)直線與實軸垂直時,做出直線與雙曲線交點(diǎn)的縱標(biāo),得到也是一條長度等于4的線段.

解答 解:∵雙曲線的兩個頂點(diǎn)之間的距離是2,小于4,
∴當(dāng)直線與雙曲線左右兩支各有一個交點(diǎn)時,過雙曲線的焦點(diǎn)一定有兩條直線使得兩交點(diǎn)之間的距離等于4,
當(dāng)直線與實軸垂直時,有3-$\frac{{y}^{2}}{2}$=1,解得y=±2,
∴此時直線AB的長度是4,即只與右支有交點(diǎn)的弦長為4的線僅有一條.
綜上可知有三條直線滿足|AB|=4,
故選:B.

點(diǎn)評 本題考查直線與雙曲線之間的關(guān)系問題,本題解題的關(guān)鍵是看清楚當(dāng)直線的斜率不存在,即直線與實軸垂直時,要驗證線段的長度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若“$?x∈[{0,\frac{π}{3}}],m≥2tanx$”是真命題,則實數(shù)m的最小值為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖正三棱柱ABC-A1B1C1中,底面邊長為a,側(cè)棱長為$\frac{{\sqrt{2}}}{2}a$,若經(jīng)過對角線AB1且與對角線BC1平行的平面交上底面于DB1
(1)試確定D點(diǎn)的位置,并證明你的結(jié)論;
(2)求二面角A1-AB1-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\sqrt{a-4}+|{\begin{array}{l}{b-1}\end{array}}|=0$,且一元二次方程kx2+ax+b=0有實數(shù)根,則k的取值范圍是(-∞,0)∪(0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.△ABC中,角A,B,C的對邊分別為a,b,c,已知$b=\frac{1}{2}$,$bsinA=asin\frac{B}{2}$,則S△ABC的最大值為( 。
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{3}}}{16}$C.$\frac{{\sqrt{3}}}{24}$D.$\frac{{\sqrt{3}}}{48}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在棱長均相等的正三棱柱ABC-A1B1C1中,M,N,D分別是棱B1C1,C1C,BC的中點(diǎn).
(Ⅰ)求證:A1M∥平面AB1D;
(Ⅱ)求證:BN⊥平面A1MC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=x3+x-3x的其中一個零點(diǎn)所在區(qū)間為(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列命題:
①在△ABC若A<B,則sinA<sinB;
②函數(shù)f(x)=$\sqrt{1-sinx}$+$\sqrt{sinx-1}$既是奇函數(shù)又是偶函數(shù);
③函數(shù)y=|tan(2x-$\frac{π}{3}$)|的周期是$\frac{π}{2}$;
④在同一坐標(biāo)系中,函數(shù)y=sinx的圖象與函數(shù)y=-lnx+1的圖象有三個公共點(diǎn).
其中正確的個數(shù)是①③④.(填出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如果函數(shù)f(x)滿足:在定義域D內(nèi)存在x0,使得對于給定常數(shù)t,有f(x0+t)=f(x0)•f(t)成立,則稱f(x)為其定義域上的t級分配函數(shù).研究下列問題:
(1)判斷函數(shù)f(x)=2x和g(x)=$\frac{2}{x}$是否為1級分配函數(shù)?說明理由;
(2)問函數(shù)φ(x)=)$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)能否成為2級分配函數(shù),若能,則求出參數(shù)a的取值范圍;若不能請說明理由;
(3)討論是否存在實數(shù)a,使得對任意常數(shù)t(t∈R)函數(shù)φ(x)=$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)都是其定義域上的t級分配函數(shù),若存在,求出參數(shù)a的取值范圍,若不能請說明理由.

查看答案和解析>>

同步練習(xí)冊答案