分析 (1)證法一:取倒數(shù)法即可得出.
證法二:作差方法:只要證明bn+1-bn為常數(shù)即可.
(2)由(1)可得bn,即可得出.
解答 (1)證法一:由已知可得$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+3}}{{3{a_n}}}=\frac{1}{a_n}+\frac{1}{3}$,即$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=\frac{1}{3}$,
∴$\{\frac{1}{a_n}\}$是以$\frac{1}{a_1}=1$為首項,$\frac{1}{3}$為公差的等差數(shù)列.
證法二:∵${b_{n+1}}-{b_n}=\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=\frac{{{a_n}-{a_{n+1}}}}{{{a_{n+1}}{a_n}}}=\frac{{{a_n}-{a_{n+1}}}}{{3({a_n}-{a_{n+1}})}}=\frac{1}{3}$,
∴$\{\frac{1}{a_n}\}$是以$\frac{1}{a_1}=1$為首項,$\frac{1}{3}$為公差的等差數(shù)列.
(2)解:由(1)知${b_n}={b_1}+(n-1)×\frac{1}{3}=\frac{n+2}{3}$.
∴${a_n}=\frac{1}{b_n}=\frac{3}{n+2}$.
點評 本題考查了數(shù)列遞推關系、等差數(shù)列的定義及其通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 正方體的體積與棱長的關系 | |
B. | 學生的成績和體重 | |
C. | 路上酒后駕駛的人數(shù)和交通事故發(fā)生的多少 | |
D. | 水的體積和重量 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\frac{9}{4}$ | D. | $\frac{9}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com