18.設(shè)正實(shí)數(shù)x,y,z滿足x2-xy+y2-z=0.則當(dāng)$\frac{xy}{z}$取得最大值時(shí),$\frac{2}{x}$+$\frac{1}{y}$-$\frac{1}{z}$的最大值為(  )
A.0B.1C.$\frac{9}{4}$D.$\frac{9}{8}$

分析 利用基本不等式求出當(dāng)$\frac{xy}{z}$取得最大值時(shí)x=y,z=x2,代入$\frac{2}{x}$+$\frac{1}{y}$-$\frac{1}{z}$得出$\frac{2}{x}$+$\frac{1}{y}$-$\frac{1}{z}$關(guān)于x的函數(shù),求出此函數(shù)的最大值即可.

解答 解:∵x2-xy+y2-z=0,∴z=x2-xy+y2,
∴$\frac{xy}{z}$=$\frac{xy}{{x}^{2}-xy+{y}^{2}}$≤$\frac{xy}{2xy-xy}=1$,當(dāng)且僅當(dāng)x=y時(shí)取得等號(hào).
∴當(dāng)$\frac{xy}{z}$取得最大值時(shí),z=x2,y=x,
∴$\frac{2}{x}$+$\frac{1}{y}$-$\frac{1}{z}$=$\frac{2}{x}+\frac{1}{x}-\frac{1}{{x}^{2}}$=$\frac{3x-1}{{x}^{2}}$,
令f(x)=$\frac{3x-1}{{x}^{2}}$,則f′(x)=$\frac{2-3x}{{x}^{3}}$,
∴當(dāng)0<x$<\frac{2}{3}$時(shí),f′(x)>0,當(dāng)x$>\frac{2}{3}$時(shí),f′(x)<0,
∴當(dāng)x=$\frac{2}{3}$時(shí),f(x)取得最大值f($\frac{2}{3}$)=$\frac{9}{4}$.
故選C.

點(diǎn)評(píng) 本題考查了基本不等式的應(yīng)用,函數(shù)最值的求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.?dāng)?shù)列{an}滿足:a1=1,${a_n}_{+1}=\frac{{3{a_n}}}{{{a_n}+3}}$,n∈N*.    
(1)令${b_n}=\frac{1}{a_n}$,求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,若a=18,b=24,A=45°,則此三角形( 。
A.無解B.有兩解C.有一解D.解的個(gè)數(shù)不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,在△ABC中,D是邊BC上一點(diǎn),AB=AD=$\frac{\sqrt{2}}{2}$AC,cos∠BAD=$\frac{1}{3}$,則sinC=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.方程lnx=$\frac{1}{x}$的解一定位于區(qū)間( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x3-3ax+b(a≠0),求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C對(duì)應(yīng)的邊分別為a,b,c,已知cos2A-3cos(B+C)=1.
(I)求A角的大;
(II)若△ABC的面積S=5$\sqrt{3}$,b=5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b∈R,則a>b是${(\frac{1}{2})^a}<{(\frac{1}{2})^b}$的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(ax2+x-1)•ex(x∈R),f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),且f'(-3)=0.
(1)求實(shí)數(shù)a的值;
(2)求曲線f(x)在(1,f(1))處的切線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案