4.給定下列函數(shù):
①f(x)=$\frac{1}{x}$②f(x)=-|x|③f(x)=-2x-1④f(x)=(x-1)2,滿足“對任意x1,x2∈(0,+∞),當(dāng)x1<x2時,都有 f(x1)>f(x2)”的條件是①②③.

分析 “對任意x1,x2∈(0,+∞),當(dāng)x1<x2時,都有 f(x1)>f(x2)”,即函數(shù)f(x)在區(qū)間(0,+∞)上為減函數(shù),進而得到答案.

解答 解:“對任意x1,x2∈(0,+∞),當(dāng)x1<x2時,都有 f(x1)>f(x2)”
則函數(shù)f(x)在區(qū)間(0,+∞)上為減函數(shù),
①f(x)=$\frac{1}{x}$滿足條件;
②f(x)=-|x|滿足條件;
③f(x)=-2x-1滿足條件;
④f(x)=(x-1)2在(0,1]上為減函數(shù),在[1,+∞)不滿足條件;
故答案為:①②③

點評 本題考查的知識點是函數(shù)的單調(diào)性,正確理解給定條件表示函數(shù)f(x)在區(qū)間(0,+∞)上為減函數(shù),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=-cos2x-4t•sin$\frac{x}{2}$cos$\frac{x}{2}$+2t2-6t+2(x∈R),其中t∈R,將f(x)的最小值記為g(t)
 (1)求g(t)的表達式;
(2)當(dāng)-1<t<1時,要使關(guān)于t的方程g(t)=kt有且僅有一個實根,求實數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)拋物線y2=2px(p>0)的焦點為F,準(zhǔn)線為l,過拋物線上一點A作l的垂線,垂足為B.設(shè)C($\frac{7}{2}$p,0),AF與BC相交于點E.若|CF|=2|AF|,且△ACE的面積為2$\sqrt{2}$,則p的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,ABCD為菱形,PD⊥平面ABCD,連接AC、BD,交于點F,AC=6,BD=8,E是棱PB上的動點,△AEC面積的最小值是3,連接DE,
(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,sinA+$\sqrt{3}$cosA=2.
(Ⅰ)求A的大;
(Ⅱ)若a=2; B=45°;求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若對于任意實數(shù)x,|x+a|-|x+1|≤2a恒成立,則實數(shù)a的最小值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)a,b∈R+,且a+b=2則ab2的最大值為$\frac{4\sqrt{6}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.把函數(shù)f(x)=log3x圖象關(guān)于x軸對稱后,再向左平移2個單位,得到新函數(shù)g(x)的解析式為( 。
A.g(x)=log3(-x+2)B.g(x)=-log3(x-2)C.g(x)=log3(-x-2)D.g(x)=-log3(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.給出下列四個命題:
①如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線與這個平面垂直;
②過空間一定點有且只有一條直線與已知平面垂直;
③如果平面外一條直線a與平面α內(nèi)一條直線b平行,那么a∥α;
④一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個二面角相等;
其中真命題的為( 。
A.①③B.②④C.②③D.③④

查看答案和解析>>

同步練習(xí)冊答案