A. | $?x∈R,{x^2}-x+\frac{1}{4}≥0$ | B. | ?x0∈R,sinx0≥1 | ||
C. | ?x0∈R,sinx0+cosx0=2 | D. | $?x∈(0,\frac{π}{2}),x>sinx$ |
分析 A.?x∈R,x2-x+$\frac{1}{4}$=$(x-\frac{1}{2})^{2}$≥0,即可判斷出真假.
B.?x0=$\frac{π}{2}$,sinx0≥1,即可判斷出真假.
C.sinx+cosx=$\sqrt{2}$sin(x+φ)≤$\sqrt{2}$,即可判斷出真假.
D.令f(x)=x-sinx,x∈$(0,\frac{π}{2})$,可得f′(x)=1-cosx>0,利用單調(diào)性即可判斷出真假.
解答 解:A.?x∈R,x2-x+$\frac{1}{4}$=$(x-\frac{1}{2})^{2}$≥0,是真命題.
B.?x0=$\frac{π}{2}$,sinx0≥1,是真命題.
C.∵sinx+cosx=$\sqrt{2}$sin(x+φ)≤$\sqrt{2}$,因此是假命題.
D.令f(x)=x-sinx,x∈$(0,\frac{π}{2})$,則f′(x)=1-cosx>0,∴函數(shù)f(x)在x∈$(0,\frac{π}{2})$單調(diào)遞增,∴f(x)>f(0)=0,
即x>sinx,因此是真命題.
故選:C.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 10 | 15 | 20 | 25 | 30 |
y | 1 003 | 1 005 | 1 010 | 1 011 | 1 014 |
A. | $\widehat{y}$=0.56x+997.4 | B. | $\widehat{y}$=0.63x-231.2 | C. | $\widehat{y}$=0.56x+501.4 | D. | $\widehat{y}$=60.4x+400.7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com