分析 (Ⅰ)連接AM,交ND于F,連接EF,推導出EF∥BM,由此能證明BM∥平面NDE.
(Ⅱ)當BE=2EA時,EA=$\frac{1}{3}$AB=2,三棱錐M-DEN的體積VM-DEN=VE-NDM,由此能求出結果.
解答 證明:(Ⅰ)連接AM,交ND于F,連接EF,由正方形ADMN,得AF=FM,又AE=EB,
∴EF∥BM.
∵BM?平面NDE,EF?平面NDE,
∴BM∥平面NDE.
解:(Ⅱ)當BE=2EA時,EA=$\frac{1}{3}$AB=2,
∵AB⊥AD,平面ADMN⊥平面ABCD,
平面ADMN∩平面ABCD=AD,
∴AB⊥平面ADMN.
∴三棱錐M-DEN的體積:
VM-DEN=VE-NDM=$\frac{1}{3}×AE×{S}_{△DNM}$=$\frac{1}{3}×2×\frac{1}{2}×{3}^{2}$=3.
點評 本題考查線面平行的證明,考查幾何體的體積的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉化思想、數(shù)形結合思想,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 16 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相交 | B. | 平行 | C. | 垂直 | D. | 不能確定 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com