【題目】已知
(1)當(dāng)時(shí),求的最大值;
(2)若存在使,得關(guān)于的方程有三個(gè)不相同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)表示此時(shí)函數(shù)的解析式,求導(dǎo)分析單調(diào)性,即可求得最值.
(2)由于為分段函數(shù),故分類討論兩段函數(shù)交點(diǎn)個(gè)數(shù),將問題可轉(zhuǎn)化為的根存在三個(gè),記,,令,令,分兩段求導(dǎo)分析函數(shù)圖象特征,進(jìn)而判定交點(diǎn)個(gè)數(shù),求得參數(shù)取值范圍.
(1)當(dāng)時(shí),,即
當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,
所以
(2),經(jīng)驗(yàn)證不是方程的根,
所以原方程的根等價(jià)于的根,
記,,令,,單調(diào)遞減,
令,即,
令為極大值點(diǎn),其在上單調(diào)遞增,在上單調(diào)遞減,
當(dāng),,
所以在無實(shí)數(shù)根
當(dāng)時(shí),……①
有兩個(gè)極值點(diǎn),且,即,
故所以,
存在使①有三個(gè)實(shí)根所以滿足條件.
當(dāng),的分子中,,顯然,所以①僅有一個(gè)正根,
要使有兩個(gè)負(fù)根,則﹐
綜上所﹐即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,,動(dòng)圓與圓、都相切,則動(dòng)圓的圓心軌跡的方程為________;直線與曲線僅有三個(gè)公共點(diǎn),依次為、、,則的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)中,圓,圓。
(Ⅰ)在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓的極坐標(biāo)方程,并求出圓的交點(diǎn)坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求圓的公共弦的參數(shù)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過點(diǎn)
且斜率為的直線與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)在軸上的射影恰好為點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年初,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了有效地控制病毒的傳播,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如下圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長(zhǎng)潛伏者”.
(1)求這名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)和眾數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,得到如下列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為潛伏期長(zhǎng)短與患者年齡有關(guān);
短潛伏者 | 長(zhǎng)潛伏者 | 合計(jì) | |
歲及以上 | |||
歲以下 | |||
合計(jì) |
(3)研究發(fā)現(xiàn),某藥物對(duì)新冠病毒有一定的抑制作用,需要從這人中分層選取位歲以下的患者做Ⅰ期臨床試驗(yàn),再從選取的人中隨機(jī)抽取兩人做Ⅱ期臨床試驗(yàn),求兩人中恰有人為“短潛伏者”的概率.
附表及公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研課題組通過一款手機(jī)APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡(jiǎn)稱“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補(bǔ)全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請(qǐng)先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據(jù)以上圖表數(shù)據(jù)計(jì)算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計(jì)該市跑步愛好者周跑量的分布特點(diǎn)
(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價(jià)格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價(jià)格(單位:元) | 2500 | 4000 | 4500 |
根據(jù)以上數(shù)據(jù),估計(jì)該市每位跑步愛好者購買裝備,平均需要花費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱柱中,平面,,.
(1)求證:平面;
(2)若是棱的中點(diǎn),在棱上是否存在一點(diǎn),使得//平面?若存在,請(qǐng)確定點(diǎn)的位置:若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com