(本題滿(mǎn)分14分,第1問(wèn)7分,第2問(wèn)7分)

已知向量a=(sin(+x),cosx),b =(sinx,cosx), f(x)=a·b

⑴求f(x)的最小正周期和單調(diào)增區(qū)間;

⑵如果三角形ABC中,滿(mǎn)足f(A)=,求角A的值.

解:⑴f(x)= sinxcosx++cos2x = sin(2x+)+

T=π,2 kπ-≤2x+≤2 kπ+k∈Z,

     最小正周期為π,

單調(diào)增區(qū)間[kπ-,kπ+],k∈Z.

     ⑵由sin(2A+)=0,<2A+<,

∴2A+=π或2π,∴A=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分,第(1)小題6分,第(2)小題8分)

四棱錐P-ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60,在四邊形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.

(1)求四棱錐P-ABCD的體積;

(2)求異面直線(xiàn)PA與BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分,第(1)小題4分,第(2)小題4分,第(2)小題6分)

設(shè)數(shù)列中,若,則稱(chēng)數(shù)列為“凸數(shù)列”。

(1)設(shè)數(shù)列為“凸數(shù)列”,若,試寫(xiě)出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;

(2)在“凸數(shù)列”中,求證:;

(3)設(shè),若數(shù)列為“凸數(shù)列”,求數(shù)列前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分,第1小題6分,第2小題8分)

已知函數(shù),x∈R,且f(x)的最大值為1.

(1) 求m的值,并求f(x)的單調(diào)遞增區(qū)間;

(2) 在△ABC中,角AB、C的對(duì)邊a、b、c,若,且,試判斷△ABC的形狀.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市高三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分14分,第1小題5分,第2小題9分)

    一校辦服裝廠(chǎng)花費(fèi)2萬(wàn)元購(gòu)買(mǎi)某品牌運(yùn)動(dòng)裝的生產(chǎn)與銷(xiāo)售權(quán),根據(jù)以往經(jīng)驗(yàn),每生產(chǎn)1百套這種品牌運(yùn)動(dòng)裝的成本為1萬(wàn)元,每生產(chǎn)x(百套)的銷(xiāo)售額R(x)(萬(wàn)元)滿(mǎn)足:

   

   (1)該服裝廠(chǎng)生產(chǎn)750套此種品牌運(yùn)動(dòng)裝可獲得利潤(rùn)多少萬(wàn)元?

   (2)該服裝廠(chǎng)生產(chǎn)多少套此種品牌運(yùn)動(dòng)裝利潤(rùn)最大?此時(shí),利潤(rùn)是多少萬(wàn)元?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市長(zhǎng)寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿(mǎn)分14分,第(1)小題6分,第(2)小題8分)

設(shè)函數(shù),若不等式的解集為。

(1)求的值;

(2)若函數(shù)上的最小值為1,求實(shí)數(shù)的值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案