17.已知關(guān)于x的不等式ax2+ax+1>0對任意x∈R恒成立,則實數(shù)a的取值范圍是( 。
A.a≥0B.a>4C.0<a<4D.0≤a<4

分析 由已知得a=0,或 $\left\{\begin{array}{l}{a>0}\\{△{=a}^{2}-4a<0}\end{array}\right.$,由此能求出實數(shù)a的取值范圍

解答 解:∵不等式ax2+ax+1>0對任意x∈R恒成立,
∴a=0,或 $\left\{\begin{array}{l}{a>0}\\{△{=a}^{2}-4a<0}\end{array}\right.$,
解得0≤a<4,
∴實數(shù)a的取值范圍是[0,4),
故選:D.

點評 本題考查實數(shù)的取值范圍的求法,是基礎題,解題時要注意二次函數(shù)的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)設△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=($\sqrt{2}$,sinB)共線,求a,b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知向量$\overrightarrow a$=(cosx,-$\frac{1}{2}$),$\overrightarrow b$=($\sqrt{3}$sin x,cos 2x),x∈R,設函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f (x)的最小正周期及單調(diào)遞增區(qū)間
(2)求f(x)在[0,$\frac{3π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)6的二項展開式中常數(shù)項為-20,則實數(shù) a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,∠ABC=60°,且AB=5,AC=7,則BC=8 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設函數(shù)f(x)=lg(1-x),則函數(shù)f(f(x))的定義域為(  )
A.(-9,+∞)B.(-9,1)C.[-9,+∞)D.[-9,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在其定義域內(nèi)有兩個不同的極值點.
(1)求a的取值范圍;
(2)記兩個極值點分別為x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1•x2λ恒成立,求λ的范圍.
(3)證明:$\frac{ln2}{3}$+$\frac{ln3}{4}$+$\frac{ln4}{5}$+…+$\frac{lnn}{{n}^{2}-1}$+(1+$\frac{1}{n}$)n<$\frac{{n}^{2}+n+10}{4}$(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知向量$\overrightarrow{m}$=(sinA,-$\frac{1}{2}$)與向量$\overrightarrow{n}$=(1,sinA+$\sqrt{3}$cosA)共線,其中A是△ABC的內(nèi)角,則角tanA的值為-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x+a-1(a為常數(shù)),若函數(shù)f(x)的最大值為$\sqrt{2}$+1.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)所有對稱中心的坐標;
(3)求函數(shù)g(x)=f(x+$\frac{3}{8}$π)+2減區(qū)間.

查看答案和解析>>

同步練習冊答案