6.已知向量$\overrightarrow{m}$=(sinA,-$\frac{1}{2}$)與向量$\overrightarrow{n}$=(1,sinA+$\sqrt{3}$cosA)共線,其中A是△ABC的內(nèi)角,則角tanA的值為-$\frac{\sqrt{3}}{3}$.

分析 由向量共線得到sinA(sinA+$\sqrt{3}$cosA)=-$\frac{1}{2}$,通過三角形函數(shù)的化簡,得到sin(2A-$\frac{π}{6}$)=-1,由于A∈(0,π),即可得出.

解答 解:向量$\overrightarrow{m}$=(sinA,-$\frac{1}{2}$)與向量$\overrightarrow{n}$=(1,sinA+$\sqrt{3}$cosA)共線,
∴sinA(sinA+$\sqrt{3}$cosA)=-$\frac{1}{2}$,
∴sin2A+$\sqrt{3}$sinAcoA=-$\frac{1}{2}$,
∴2sin2A-1+2$\sqrt{3}$sinAcoA=-2
∴-cos2A+$\sqrt{3}$sin2A=-2,
∴sin(2A-$\frac{π}{6}$)=-1,
∴2A-$\frac{π}{6}$=-$\frac{π}{2}$+2kπ,k∈Z,
∵A是△ABC的內(nèi)角
∴A=$\frac{5π}{6}$,
∴tanA=-$\frac{\sqrt{3}}{3}$,
故答案為:-$\frac{\sqrt{3}}{3}$

點評 本題考查了向量共線定理、和差化積、倍角公式、三角函數(shù)求值,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=$\frac{[x-m]}{x-m}$,其中m∈N*,則給出以下四個結(jié)論其中正確是( 。
A.函數(shù)f(x)在(m+1,+∞)上的值域為$(\frac{1}{2},1]$B.函數(shù)f(x)的圖象關于直線x=m對稱
C.函數(shù)f(x)在(m,+∞)是減函數(shù)D.函數(shù)f(x)在(m+1,+∞)上的最小值為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知關于x的不等式ax2+ax+1>0對任意x∈R恒成立,則實數(shù)a的取值范圍是(  )
A.a≥0B.a>4C.0<a<4D.0≤a<4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知a>0,b>0且2a+b=1,若不等式$\frac{2}{a}$+$\frac{1}$≥m恒成立,則m的最大值等于( 。
A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.(1)如圖1,在四棱錐P-ABCD中,底面ABCD是矩形,E,F(xiàn)分別是PB,PC的中點.證明:EF∥平面PAD
(2)如圖2,已知四棱錐P-ABCD中,底面ABCD為平行四邊形,點M,N,Q分別是PA,BD,PD的中點上,.求證:平面MNQ∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.從n個正整數(shù)1,2,3,4,5,…,n任意取出兩個不同的數(shù),若其和為5的概率是$\frac{1}{14}$,則n=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在等比數(shù)列{an}中,a2016=8a2013,則公比q的值為( 。
A.8B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知定義在R上的函數(shù)f(x),當x<0時,f(x)=x3-1;當-1≤x≤1時,f(-x)=-f(x);當x>$\frac{1}{4}$時,f(x+$\frac{3}{4}$)=f(x-$\frac{1}{4}$),則f(6)=(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知M(4,2)是直線l被橢圓x2+4y2=36所截得的弦AB的中點,則直線l的方程為(  )
A.x+2y-8=0B.2x-y-6=0C.2x+y-10=0D.x-2y=0

查看答案和解析>>

同步練習冊答案