已知a,b∈R,函數(shù)f(x)=(ax+2)lnx,g(x)=bx2+4x-5,且曲線y=f(x)與曲線y=g(x)在x=1處有相同的切線.
(1)求a,b的值;
(2)(2)證明:當x≠1時,曲線y=f(x)恒在曲線y=g(x)的下方;
(3)當x∈(0,k]時,不等式(2k+1)f(x)≤(2x+1)g(x)恒成立,求實數(shù)k的取值范圍.
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值,利用導數(shù)研究函數(shù)的單調(diào)性
專題:計算題,證明題,函數(shù)的性質(zhì)及應(yīng)用,導數(shù)的綜合應(yīng)用
分析:(1)求導f′(x)=a(lnx+1)+
2
x
,g′(x)=2bx+4;從而可得b+4-5=0,a+2=2b+4;從而求參數(shù)的值;
(2)要使得當x≠1時,曲線y=f(x)恒在曲線y=g(x)的下方,只證f(x)<g(x)(x≠1),不妨設(shè)F(x)=f(x)-g(x),從而求導F′(x)=4lnx+
4x+2
x
-2x-4=4lnx+
2
x
-2x;從而化為恒成立問題,再轉(zhuǎn)化為最值問題.(3)由題意知,k>0,2x+1>0;故不等式(2k+1)f(x)≤(2x+1)g(x)可轉(zhuǎn)化為2(2k+1)lnx≤x2+4x-5,從而構(gòu)造函數(shù)H(x)=2(2k+1)lnx-x2-4x+5,討論求實數(shù)k的取值范圍.
解答: 解:(1)∵f′(x)=a(lnx+1)+
2
x
,g′(x)=2bx+4;
∴f′(1)=a+2,g′(1)=2b+4;
又∵曲線y=f(x)與曲線y=g(x)在點(1,0)處有相同的切線,
∴f(1)=0=g(1)=b+4-5,f′(1)=g′(1);
即b+4-5=0,a+2=2b+4;
從而解得,b=1,a=4;
(2)證明:要使得當x≠1時,曲線y=f(x)恒在曲線y=g(x)的下方,
即需證f(x)<g(x)(x≠1),
不妨設(shè)F(x)=f(x)-g(x),
則F(x)=(4x+2)lnx-x2-4x+5;
∴F′(x)=4lnx+
4x+2
x
-2x-4=4lnx+
2
x
-2x;
令G(x)=F′(x),
∴G′(x)=
4
x
-
2
x2
-2≤0恒成立,
∴F′(x)在(0,+∞)上單調(diào)遞減,
又∵F′(1)=0,
∴當x∈(0,1)時,F(xiàn)′(x)>0,當x∈(1,+∞)時,F(xiàn)′(x)<0;
∴F(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
即當x=1時,F(xiàn)(x)取得最大值F(1)=0.
∴當x≠1時,F(xiàn)(x)<F(1)=0,即f(x)<g(x);
∴當x≠1時,曲線y=f(x)恒在曲線y=g(x)的下方;
(3)由題意知,k>0,2x+1>0;
∴不等式(2k+1)f(x)≤(2x+1)g(x)可轉(zhuǎn)化為2(2k+1)lnx≤x2+4x-5,
構(gòu)造函數(shù)H(x)=2(2k+1)lnx-x2-4x+5,
∴H′(x)=
-2x2-4x+4k+2
x
,
在二次函數(shù)y=-2x2-4x+4k+2中,開口向下,對稱軸為x=-1;
且過定點(0,4k+2);
解-2x2-4x+4k+2=0得,x=-1-
2k+2
(舍去);x=-1+
2k+2
;
①當-1+
2k+2
<k時,即k<-1(舍去)或k>1;
②當-1+
2k+2
=k時,k=1;經(jīng)檢驗成立;
③當-1+
2k+2
>k時,0<k<1,
當x∈(0,k)時,H′(x)>0,
∴H(x)在(0,k]時取得最大值記為H2(k)=2(2k+1)lnk-k2-4k+5,
由(2)可知,H2(k)的圖象與F(x)的圖象相同,
∴0<k<1時,H2(k)<H2(1)=0,原不等式恒成立;
綜上所述,實數(shù)k的取值范圍是(0,1].
點評:本題考查了導數(shù)的綜合應(yīng)用及恒成立問題,同時考查了分類討論的思想應(yīng)用,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列判斷正確的是( 。
A、f(x)=x3+1是奇函數(shù)
B、f(x)=x4-x2+x是偶函數(shù)
C、f(x)=
x3+x2
x+1
是偶函數(shù)
D、f(x)=x3+
1
x
是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
的定義域為A,值域為B.
(Ⅰ)當a=4時,求A∩B;
(Ⅱ)若1∈B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=2px(p>0)的焦點為F,準線為l,A,B是拋物線上的兩個動點,且滿足∠AFB=
3
.設(shè)線段AB的中點M在l上的投影為N,則
|MN|
|AB|
的最大值是(  )
A、
3
B、
3
2
C、
3
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x|-3<x<1},Q={x|-1≤x≤2},則P∩Q=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算(1+i)2=( 。
A、2iB、-2i
C、2+2iD、2-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,曲線C1
x=t
y=t2
(t為參數(shù))與以O(shè)為原點,X軸正半軸為極軸建立的極坐標系下的直線l:ρ(2cosθ-sinθ)+1=0交于A、B兩點,則線段AB的中點的直角坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
e2
x
-
a
x
-alnx(a∈R)(e≈2.718,
e
=1.6487,ln2=0.6931).
(1)當a=0時,若f(x)在(2,f(2))的切線與以(1,-4)為圓心,半徑為r的圓相切,求r的值;
(2)當x>
1
2
時,f(x)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品廣告費支出x(單位:萬元)與銷售額y(單位:萬元)之間滿足的回歸直線方程為
y
=6.5x+15.6,則以下說法正確的是(  )
A、廣告費支出每減少1萬元,銷售額下降15.6萬元
B、廣告費支出每增加1萬元,銷售額增加6.5萬元
C、廣告費支出每增加1萬元,銷售額下降15.6萬元
D、廣告費支出每減少1萬元,銷售額增加6.5萬元

查看答案和解析>>

同步練習冊答案