【題目】
如圖,在直三棱柱中,平面側(cè)面A1ABB1.
(Ⅰ)求證:;
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ,試判斷θ與φ的大小關(guān)系,并予以證明.
【答案】(Ⅰ)證明見(jiàn)解析.
(Ⅱ),證明見(jiàn)解析.
【解析】
(Ⅰ)證明:如右圖,過(guò)點(diǎn)A在平面A1ABB1內(nèi)作AD⊥A1B于D,則
由平面A1BC⊥側(cè)面A1ABB1,且平面A1BC側(cè)面A1ABB1=A1B,得
AD⊥平面A1BC,又BC平面A1BC,所以AD⊥BC.
因?yàn)槿庵?/span>ABC—A1B1C1是直三棱柱,則AA1⊥底面ABC,所以AA1⊥BC.
又AA1AD=A,從而BC⊥側(cè)面A1ABB1,
又AB側(cè)面A1ABB1,故AB⊥BC.
(Ⅱ)解法1:連接CD,則由(Ⅰ)知是直線AC與平面A1BC所成的角,
是二面角A1—BC—A的平面角,即
于是在中,在中,,
由,得,又,所以.
解法2:由(1)知,以點(diǎn)為坐標(biāo)原點(diǎn),以、、所在的直線分軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系,
設(shè),
則,
于是,.
設(shè)平面的一個(gè)法向量為,則
由得
可取,于是與的夾角為銳角,則與互為余角.
所以,,
所以.
于是由,得,
即,又所以.
第(1)問(wèn)證明線線垂直,一般先證線面垂直,再由線面垂直得線線垂直;第(2)問(wèn)若用傳統(tǒng)方法一般來(lái)說(shuō)要先作垂直,進(jìn)而得直角三角形.若用向量方法,關(guān)鍵在求法向量.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,下頂點(diǎn)為,上頂點(diǎn)為,是等邊三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線,過(guò)點(diǎn)且斜率為的直線與橢圓交于點(diǎn) 異于點(diǎn),線段的垂直平分線與直線交于點(diǎn),與直線交于點(diǎn),若.
(ⅰ)求的值;
(ⅱ)已知點(diǎn),點(diǎn)在橢圓上,若四邊形為平行四邊形,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,且在橢圓上運(yùn)動(dòng),當(dāng)點(diǎn)恰好在直線l:上時(shí),的面積為.
(1)求橢圓的方程;
(2)作與平行的直線,與橢圓交于兩點(diǎn),且線段的中點(diǎn)為,若的斜率分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),證明:
(1)在區(qū)間存在唯一極大值點(diǎn);
(2)有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,函數(shù)在,處取得極值,其中.
(1)求實(shí)數(shù)t的取值范圍;
(2)判斷在上的單調(diào)性并證明;
(3)已知在上的任意、,都有,令,若函數(shù)有3個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2010-2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對(duì)光纖產(chǎn)品的需求,以及個(gè)人計(jì)算機(jī)及智能手機(jī)的下一代規(guī)格升級(jí),電動(dòng)汽車及物聯(lián)網(wǎng)等新機(jī)遇,連接器行業(yè)增長(zhǎng)呈現(xiàn)加速狀態(tài).根據(jù)該折線圖,下列結(jié)論正確的個(gè)數(shù)為( )
①每年市場(chǎng)規(guī)模量逐年增加;
②增長(zhǎng)最快的一年為2013~2014;
③這8年的增長(zhǎng)率約為40%;
④2014年至2018年每年的市場(chǎng)規(guī)模相對(duì)于2010年至2014年每年的市場(chǎng)規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn)
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人準(zhǔn)備投資1200萬(wàn)元辦一所中學(xué),為了考慮社會(huì)效益和經(jīng)濟(jì)效益,對(duì)該地區(qū)教育市場(chǎng)進(jìn)行調(diào)查,得出一組數(shù)據(jù),列表如下(以班級(jí)為單位).
市場(chǎng)調(diào)查表:
班級(jí)學(xué)生數(shù) | 配備教師數(shù) | 硬件建設(shè)費(fèi)(萬(wàn)元) | 教師年薪(萬(wàn)元) | |
初中 | 50 | 2.0 | 28 | 1.2 |
高中 | 40 | 2.5 | 58 | 1.6 |
根據(jù)物價(jià)部門(mén)的有關(guān)規(guī)定:初中是義務(wù)教育階段,收費(fèi)標(biāo)準(zhǔn)適當(dāng)控制,預(yù)計(jì)除書(shū)本費(fèi)、辦公費(fèi)外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和環(huán)境等條件限制,辦學(xué)規(guī)模以20至30個(gè)班為宜(含20個(gè)班與30個(gè)),教師實(shí)行聘任制.初、高中教育周期均為三年,設(shè)初中編制為個(gè)班,高中編制為個(gè)班,請(qǐng)你合理地安排招生計(jì)劃,使年利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓1(a>b>0)的左右焦點(diǎn)分別為F1F2,左右頂點(diǎn)分別為AB,上頂點(diǎn)為T,且△TF1F2為等邊三角形.
(1)求此橢圓的離心率e;
(2)若直線y=kx+m(k>0)與橢圓交與CD兩點(diǎn)(點(diǎn)D在x軸上方),且與線段F1F2及橢圓短軸分別交于點(diǎn)MN(其中MN不重合),且|CM|=|DN|.
①求k的值;
②設(shè)ADBC的斜率分別為k1,k2,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com