【題目】已知函數(shù).

1)解關于的不等式;

2)若不等式對任意恒成立,求的取值范圍.

【答案】12

【解析】

1)根據(jù)絕對值不等式的解法,求得不等式的解集.

2)解法一:利用分離參數(shù)法,結合絕對值三角不等式,求得的取值范圍.解法二:利用零點分段法去絕對值進行分類討論,由此求得的取值范圍.解法三:利用分析法,結合絕對值不等式化簡,由此求得的取值范圍.

1)由題;,所以

,即.

所以原不等式的解集為.

2)解法1:分離參數(shù)

由題對任意均成立,故

①當時,不等式恒成立;

②當時,對任意非零實數(shù)恒成立,而,故

綜上:

解法2:分類討論

由題恒成立;

①當時,不等式恒成立;

②當時,

③當時,,故;

④當時,,故,故,即;

⑤當時,,故恒成立.

即:線性函數(shù)在時恒小于6,故,解得:

綜上:

解法三:

由題對任意均成立,故

即為

轉化為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為,(t為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標中,曲線的極坐標方程為.

1)將的方程化為極坐標方程;

2)若曲線的公共點都在上,,求r.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的左頂點為,右焦點為,為橢圓上兩點,圓.

1)若軸,且滿足直線與圓相切,求圓的方程;

2)若圓的半徑為,點滿足,求直線被圓截得弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學生自主創(chuàng)業(yè),經(jīng)銷某種農產品,在一個銷售季度內,每售出該產品獲利潤800元,未售出的產品,每虧損200.根據(jù)歷史資料,得到銷售季度內市場需求量的頻率分布直方圖,如圖所示.該大學生為下一個銷售季度購進了該農產品.(單位:)表示下一個銷售季度內的市場需求量,(單位:元)表示下一個銷售季度內經(jīng)銷該農產品的利潤.

1)將表示為的函數(shù);

2)根據(jù)直方圖估計利潤不少于94000元的概率;

3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若,則取,且的概率等于需求量落入的頻率),求的均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,在直三棱柱中,平面側面A1ABB1

)求證:

)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ,試判斷θφ的大小關系,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三共有1000位學生,為了分析某次的數(shù)學考試成績,采取隨機抽樣的方法抽取了200位高三學生的成績進行統(tǒng)計分析得到如圖所示頻率分布直方圖:

1)計算這些學生成績的平均值及樣本方差(同組的數(shù)據(jù)用該組區(qū)間的中點值代替);

2)由頻率分布直方圖認為,這次成績X近似服從正態(tài)分布,其中μ近似為樣本平均數(shù),近似為樣本方差.

(i);

(ii)從高三學生中抽取10位學生進行面批,記表示這10位學生成績在的人數(shù),利用(i)的結果,求數(shù)學期望.

附:;

,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面平面,,DE AC,AD=BD=1.

(Ⅰ)AB的長;

(Ⅱ)已知,求點E到平面BCD的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價為200元,低于100箱按原價銷售;不低于100箱通過雙方議價,買方能以優(yōu)惠成交的概率為0.6,以優(yōu)惠成交的概率為0.4.

(1)甲、乙兩單位都要在該廠購買150箱這種零件,兩單位各自達成的成交價相互獨立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

(2)某單位需要這種零件650箱,求購買總價的數(shù)學期望.

查看答案和解析>>

同步練習冊答案