【題目】(2017·合肥市質(zhì)檢)已知點F為橢圓E: (a>b>0)的左焦點,且兩焦點與短軸的一個頂點構成一個等邊三角形,直線與橢圓E有且僅有一個交點M.
(1)求橢圓E的方程;
(2)設直線與y軸交于P,過點P的直線l與橢圓E交于不同的兩點A,B,若λ|PM|2=|PA|·|PB|,求實數(shù)λ的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)由兩焦點與短軸的一個頂點構成一個等邊三角形,直線與橢圓有且僅有一個交點可得關于, 的方程組,求出, 的值,即可得到橢圓的方程;(2)由(1)求得坐標,得到的值,當直線與軸垂直時,直接由,求得值;當直線與軸不垂直時,設直線的方程為,聯(lián)立直線方程與橢圓方程,利用判別式大于求得的取值范圍,再由根與系數(shù)的關系,結合,把用含有的表達式表示,則實數(shù)的取值范圍可求.
試題解析:(1)由題意,得a=2c,b=c,則橢圓E為.
由,得x2-2x+4-3c2=0.
∵直線與橢圓E有且僅有一個交點M,
∴Δ=4-4(4-3c2)=0c2=1,
∴橢圓E的方程為.
(2)由(1)得M,
∵直線與y軸交于P(0,2),
∴|PM|2=,
當直線l與x軸垂直時,
|PA|·|PB|=(2+)×(2-)=1,
∴λ|PM|2=|PA|·|PB|λ=,
當直線l與x軸不垂直時,設直線l的方程為y=kx+2,A(x1,y1),B(x2,y2),
由(3+4k2)x2+16kx+4=0,
依題意得,x1x2=,且Δ=48(4k2-1)>0,
∴|PA|·|PB|=(1+k2)x1x2=(1+k2)·=1+=λ,
∴λ= (1+),
∵k2>,∴<λ<1.
綜上所述,λ的取值范圍是[,1).
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+b圖象上的點P(2,1)關于直線y=x的對稱點Q在函數(shù)g(x)=lnx+a上.
(Ⅰ)求函數(shù)h(x)=g(x)-f(x)的最大值;
(Ⅱ)對任意x1∈[1,e],x2∈,是否存在實數(shù)k,使得不等式成立,若存在,請求出實數(shù)k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一張紙的長、寬分別為2a,2a,A,B,C,D分別是其四條邊的中點,現(xiàn)將其沿圖中虛線折起,使得P1,P2,P3,P4四點重合為一點P,從而得到一個多面體,關于該多面體的下列命題,正確的是________(寫出所有正確命題的序號).
①該多面體是三棱錐;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④該多面體外接球的表面積為5πa2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的偶函數(shù)y=f(x)滿足:f(x+4)=f(x)+f(2),且當x∈[0,2]時,y=f(x)單調(diào)遞減,給出以下四個命題:
①f(2)=0;②直線x=-4為函數(shù)y=f(x)圖象的一條對稱軸;③函數(shù)y=f(x)在[8,10]上單調(diào)遞增;④若關于x的方程f(x)=m在[-6,-2]上的兩根分別為x1,x2,則x1+x2=-8.
其中所有正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=ex(ln x-a)(e是自然對數(shù)的底數(shù),
e=2.71 828…).
(1)若y=f(x)在x=1處的切線方程為y=2ex+b,求a,b的值.
(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞減,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知△ABC中,角A,B,C所對的邊分別為a,b,c,且3a2+ab-2b2=0.
(Ⅰ)若B=,求sinC的值;
(Ⅱ)若sin A+3sin C=3sin B,求sinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】家政服務公司根據(jù)用戶滿意程度將本公司家政服務員分為兩類,其中A類服務員12名,B類服務員x名.
(Ⅰ)若采用分層抽樣的方法隨機抽取20名家政服務員參加技術培訓,抽取到B類服務員的人數(shù)是16, 求x的值;
(Ⅱ)某客戶來公司聘請2名家政服務員,但是由于公司人員安排已經(jīng)接近飽和,只有3名A類家政服務員和2名B類家政服務員可供選擇,求該客戶最終聘請的家政服務員中既有A類又有B類的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com