2.下列說(shuō)法中正確的個(gè)數(shù)是( 。
(1)“m為實(shí)數(shù)”是“m為有理數(shù)”的充分不必要條件;
(2)“a>b”是“a2>b2”的充要條件;
(3)“x=3”是“x2-2x-3=0”的必要不充分條件;
(4)“A∩B=B”是“A=∅”的必要不充分條件;
(5)“α=kπ+$\frac{5}{12}$π,k∈Z”是“sin2α=$\frac{1}{2}$”的充要條件.
A.0B.2C.1D.3

分析 利用充要條件判斷5個(gè)命題的真假即可.

解答 解:(1)“m為實(shí)數(shù)”是“m為有理數(shù)”的必要不充分條件;所以原判斷是不正確的;
(2)“a>b”是“a2>b2”的充要條件;反例:a=0,b=-1,a>b推不出a2>b2,所以命題不正確;
(3)“x=3”是“x2-2x-3=0”的充分不必要條件;所以原判斷不正確;
(4)“A∩B=B”是“A=∅”的既不充分也不必要條件;所以原判斷不正確;
(5)“α=kπ+$\frac{5}{12}$π,k∈Z”是“sin2α=$\frac{1}{2}$”的充分不必要條件.所以原判斷不正確;
正確判斷個(gè)數(shù)是0.
故選:A.

點(diǎn)評(píng) 本題考查充要條件的判斷與應(yīng)用,命題的真假的判斷,考查基本知識(shí)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=-arccos2x的反函數(shù)為y=$\frac{1}{2}$cosx,(0,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某森林出現(xiàn)火災(zāi),火勢(shì)正以每分鐘100m2的速度順風(fēng)蔓延,消防站接到警報(bào)立即派消防隊(duì)員前去,在火災(zāi)發(fā)生后5分鐘到達(dá)救火現(xiàn)場(chǎng),已知消防隊(duì)員在現(xiàn)場(chǎng)平均每人每分鐘滅火50m2,所消耗的滅火材料、勞務(wù)津貼等費(fèi)用為每人每分鐘125元,另附加每次救火所損耗的車輛、器械和裝備等費(fèi)用平均每人100元,而燒毀一平方米森林損失費(fèi)為60元.
(1)設(shè)派x名消防隊(duì)員前去救火,用t分鐘將火撲滅,試建立t與x的函數(shù)關(guān)系式;
(2)問(wèn)應(yīng)該派多少名消防隊(duì)員前去救火,才能使總損失最少?
(總損失=滅火材料、勞務(wù)津貼等費(fèi)用+車輛、器械和裝備費(fèi)用+森林損失費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)a>0,b>0,若log4($\frac{1}{a}$+$\frac{1}$)=log2$\sqrt{\frac{1}{ab}}$,則$\frac{1}{a}$+$\frac{1}$的最小值為( 。
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.下面有五個(gè)命題:
①終邊在y軸上的角的集合是$\{β|β=2kπ+\frac{π}{2},\;k∈Z\}$;
②若扇形的弧長(zhǎng)為4cm,面積為4cm2,則這個(gè)扇形的圓心角的弧度數(shù)是2;
③函數(shù)y=cos2($\frac{π}{4}$-x)是奇函數(shù);
④函數(shù)y=4sin(2x-$\frac{π}{3}$)的一個(gè)對(duì)稱中心是($\frac{π}{6}$,0);
⑤函數(shù)y=tan(-x-π)在$[-π,-\frac{π}{2})$上是增函數(shù).
其中正確命題的序號(hào)是②③④(把你認(rèn)為正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.平面上兩點(diǎn)F1,F(xiàn)2滿足|F1F2|=4,設(shè)d為實(shí)數(shù),令Γ表示平面上滿足||PF1|+|PF2||=d的所有P點(diǎn)組成的圖形,又令C為平面上以F1為圓心、1為半徑的圓.則下列結(jié)論中,其中正確的有②③⑤(寫出所有正確結(jié)論的編號(hào)).
①當(dāng)d=4時(shí),Γ為直線;
②當(dāng)d=5時(shí),Γ為橢圓;
③當(dāng)d=6時(shí),Γ與圓C交于三點(diǎn);
④當(dāng)d>6時(shí),Γ與圓C交于兩點(diǎn);
⑤當(dāng)d<4時(shí),Γ不存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知實(shí)數(shù)x、y的取值如表所示
x0134
y1234.4
(1)請(qǐng)根據(jù)表數(shù)據(jù)在下面網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請(qǐng)根據(jù)表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個(gè)實(shí)數(shù)根分別在區(qū)間(-3,-2),(0,1)內(nèi),則實(shí)數(shù)b的取值范圍為($\frac{1}{5}$,$\frac{5}{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.均值不等式已知x+3y=4xy,x>0,y>0則x+y的最小值是$\frac{{2+\sqrt{3}}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案