10.設(shè)a>0,b>0,若log4($\frac{1}{a}$+$\frac{1}$)=log2$\sqrt{\frac{1}{ab}}$,則$\frac{1}{a}$+$\frac{1}$的最小值為(  )
A.8B.4C.1D.$\frac{1}{4}$

分析 a>0,b>0,log4($\frac{1}{a}$+$\frac{1}$)=log2$\sqrt{\frac{1}{ab}}$,可得$\sqrt{\frac{1}{a}+\frac{1}}$=$\sqrt{\frac{1}{ab}}$,化為:a+b=1.再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵a>0,b>0,log4($\frac{1}{a}$+$\frac{1}$)=log2$\sqrt{\frac{1}{ab}}$,
∴$\sqrt{\frac{1}{a}+\frac{1}}$=$\sqrt{\frac{1}{ab}}$,可得$\frac{1}{a}$+$\frac{1}$=$\frac{1}{ab}$,化為:a+b=1.
則$\frac{1}{a}$+$\frac{1}$=(a+b)$(\frac{1}{a}+\frac{1})$=2+$\frac{a}+\frac{a}$≥2+2$\sqrt{\frac{a}•\frac{a}}$=4,當(dāng)且僅當(dāng)a=b=$\frac{1}{2}$時(shí)取等號(hào).
故選:B.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)運(yùn)算性質(zhì)、“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在邊長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E為DD1中點(diǎn),
(1)證明:BD1∥平面AEC;
(2)求三棱錐E-ADC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.將數(shù)字1,1,2,2,3,3排成三行兩列,要求每行的數(shù)字互不相同,每列的數(shù)字也互不相同,則不同的排列方法共有( 。
A.12種B.18種C.24種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.一個(gè)物體的運(yùn)動(dòng)方程為s=1-t+t2,其中s的單位是米,t的單位是秒,那么物體在3秒這個(gè)時(shí)刻的瞬時(shí)速度是(  )
A.7米/秒B.6米/秒C.5米/秒D.8米/秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若($\sqrt{x}$-$\frac{2}{x}$)n的二項(xiàng)展開式中的第五項(xiàng)是常數(shù),則自然數(shù)n的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若向量$\overrightarrow a=(-1,x)$與$\overrightarrow b=(-x,2)$共線且方向相同,則x的值為( 。
A.$\sqrt{2}$B.$-\sqrt{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法中正確的個(gè)數(shù)是( 。
(1)“m為實(shí)數(shù)”是“m為有理數(shù)”的充分不必要條件;
(2)“a>b”是“a2>b2”的充要條件;
(3)“x=3”是“x2-2x-3=0”的必要不充分條件;
(4)“A∩B=B”是“A=∅”的必要不充分條件;
(5)“α=kπ+$\frac{5}{12}$π,k∈Z”是“sin2α=$\frac{1}{2}$”的充要條件.
A.0B.2C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足2ax0+b=0,則下列選項(xiàng)中是假命題的是(  )
A.?x∈R,f(x)≤f(x0B.?x∈R,f(x)≥f(x0C.?x∈R,f(x)≤f(x0D.?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.△ABC中,O是BC的中點(diǎn),|BC|=3$\sqrt{2}$,其周長(zhǎng)為6+3$\sqrt{2}$,若點(diǎn)T在線段AO上,且|AT|=2|TO|.
(Ⅰ)建立合適的平面直角坐標(biāo)系,求點(diǎn)T的軌跡E的方程;
(Ⅱ)若M,N是射線OC上不同的兩點(diǎn),|OM|•|ON|=1,過(guò)點(diǎn)M的直線與E交于P,Q,直線QN與E交于另一點(diǎn)R,證明:△MPR是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案