若函數(shù)y=x2-
m
n
x+
1
n
的圖象在點(diǎn)M(0,
1
n
)
處的切線l與圓C:x2+y2=1相交,則點(diǎn)P(m,n)與圓C的位置關(guān)系是(  )
A、圓內(nèi)B、圓外
C、圓上D、圓內(nèi)或圓外
分析:根據(jù)f′(0)求出切線的斜率,表示出切線方程,因?yàn)榍芯l與圓相交得到圓心到直線的距離小于半徑列出關(guān)系式,得到根據(jù)點(diǎn)到圓心的距離與半徑比較大小得到點(diǎn)與圓C的位置關(guān)系.
解答:解:函數(shù)f(x)圖象在M處切線l的斜率k=f′(0)=-
m
n
,
∴切線l的方程為mx+ny=1,
∵與x2+y2=1相交,所以圓心(0,0)到切線l的距離d=
|1|
m2+n2
=
1
m2+n2
<1
解得
m2+n2
> 1
,
而P(m,n)到圓心(0,0)的距離
m2+n2
> 1
,所以點(diǎn)在圓外.
故選B
點(diǎn)評:本題是一道綜合題,要求學(xué)生會根據(jù)d與r的大小判斷點(diǎn)與圓的位置關(guān)系,理解直線與圓垂直時圓心到直線的距離等于半徑,以及靈活運(yùn)用點(diǎn)到直線的距離公式化簡求值.會根據(jù)導(dǎo)函數(shù)求曲線上某點(diǎn)切線的斜率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義域在[x1,x2]的函數(shù)y=f(x)的圖象為C,C的端點(diǎn)分別為A、B,M是C上的任一點(diǎn),向量
OA
=(x1,y1),
OB
=(x2,y2),
OM
=(x,y)
,若x=λx1+(1-λ)x2,記向量
ON
OA
+(1-λ)
OB
,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)K下線性近似”是指|
MN
|≤K
恒成立,其中K是一個正數(shù).
(1)證明:0≤λ≤1(2);
(3)請你給出一個標(biāo)準(zhǔn)K的范圍,使得[0,1]上的函數(shù)y=x2(4)與y=x3(5)中有且只有一個可在標(biāo)準(zhǔn)K下線性近似.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)已知函數(shù)y=f(x)在區(qū)間[a,b]上均有意義,且A、B是其圖象上橫坐標(biāo)分別為a、b的兩點(diǎn).對應(yīng)于區(qū)間[0,1]內(nèi)的實(shí)數(shù)λ,取函數(shù)y=f(x)的圖象上橫坐標(biāo)為x=λa+(1-λ)b的點(diǎn)M,和坐標(biāo)平面上滿足
MN
MA
+(1-λ)
MB
的點(diǎn)N,得
MN
.對于實(shí)數(shù)k,如果不等式|MN|≤k對λ∈[0,1]恒成立,那么就稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2+x在[1,2]上“k階線性近似”,則實(shí)數(shù)k的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)y=
x2-2x+1
x-2
  (x<2)的最大值
(2)函數(shù)y=loga(x+3)(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,求
1
m
+
2
n
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)y=f(x)在區(qū)間[a,b]上均有意義,且A、B是其圖象上橫坐標(biāo)分別為a、b的兩點(diǎn).對應(yīng)于區(qū)間[0,1]內(nèi)的實(shí)數(shù)λ,取函數(shù)y=f(x)的圖象上橫坐標(biāo)為x=λa+(1-λ)b的點(diǎn)M,和坐標(biāo)平面上滿足數(shù)學(xué)公式的點(diǎn)N,得數(shù)學(xué)公式.對于實(shí)數(shù)k,如果不等式|MN|≤k對λ∈[0,1]恒成立,那么就稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2+x在[1,2]上“k階線性近似”,則實(shí)數(shù)k的取值范圍為


  1. A.
    數(shù)學(xué)公式
  2. B.
    [0,+∞)
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省泉州市高三3月質(zhì)量檢查數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知函數(shù)y=f(x)在區(qū)間[a,b]上均有意義,且A、B是其圖象上橫坐標(biāo)分別為a、b的兩點(diǎn).對應(yīng)于區(qū)間[0,1]內(nèi)的實(shí)數(shù)λ,取函數(shù)y=f(x)的圖象上橫坐標(biāo)為x=λa+(1-λ)b的點(diǎn)M,和坐標(biāo)平面上滿足的點(diǎn)N,得.對于實(shí)數(shù)k,如果不等式|MN|≤k對λ∈[0,1]恒成立,那么就稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2+x在[1,2]上“k階線性近似”,則實(shí)數(shù)k的取值范圍為( )
A.
B.[0,+∞)
C.
D.

查看答案和解析>>

同步練習(xí)冊答案