【題目】已知函數(shù).

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)求函數(shù)f(x)的最大值及取得最大值時(shí)x的取值集合.

【答案】(1)最小正周期Tπ, 單調(diào)遞減區(qū)間為[,],(kZ).(2)最大值為, x的取值集合為:{x|x,kZ}.

【解析】

(1),利用兩角和與差的正弦公式轉(zhuǎn)化為:sin(2x),再利用正弦函數(shù)的性質(zhì)求解.

(2)利用正弦函數(shù)的性質(zhì),當(dāng) ,kZ時(shí),函數(shù)f(x)取得最大值求解.

(1)∵函數(shù)

=2(sinxcoscosxsin)cosx1

=2sinxcosx+2cos2x1

=sin2x+cos2x

sin(2x),

∴函數(shù)f(x)的最小正周期Tπ,

2kkZ,

解得函數(shù)f(x)的單調(diào)遞減區(qū)間為[,](kZ).

(2)f(x),

∴函數(shù)f(x)的最大值為,

取得最大值時(shí)x的取值集合滿足:,kZ.

解得x,kZ.

∴函數(shù)f(x)取得最大值時(shí)x的取值集合為:{x|x,kZ}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列.

(1)是否存在實(shí)數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請(qǐng)說明理由;

(2)若是數(shù)列的前項(xiàng)和,求滿足的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)用五點(diǎn)法作函數(shù)的圖象;

2)說出此圖象是由的圖象經(jīng)過怎樣的變化得到的;

3)求此函數(shù)的對(duì)稱軸、對(duì)稱中心、單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )

A.y=x2B.C.y=2|x|D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線與圓相交于不同的兩點(diǎn),點(diǎn)是線段的中點(diǎn)。

(1)求直線的方程;

(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點(diǎn),不經(jīng)過點(diǎn),且的面積最大?若存在,求出的方程及對(duì)應(yīng)的的面積S;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在直三棱柱ABC A1B1C1中,已知AC⊥BC,BC=CC1,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.

(1)求證:DE∥平面AA1C1C;

(2) 求證:BC1⊥AB1;

(3)設(shè)AC=BC=CC1 =1,求銳二面角A- B1C- A1的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)R上的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;

2設(shè)a (, ), 的導(dǎo)函數(shù)①若對(duì)任意的x0 0,求證:存在,使0;②若,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)fx)的單調(diào)遞減區(qū)間;

2)設(shè)fx)的最小值是,最大值是3,求實(shí)數(shù)mn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時(shí)的收益為萬元,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬元時(shí)的收益為0.5萬元,

1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?

查看答案和解析>>

同步練習(xí)冊(cè)答案