19.已知等差數(shù)列{an}的公差d為正數(shù),a1=1,2(anan+1+1)=tn(1+an),t為常數(shù),則an=2n-1.

分析 根據(jù)數(shù)列的遞推關(guān)系式,先求出t=4,即可得到{a2n-1}是首項為1,公差為4的等差數(shù)列,a2n-1=4n-3,{a2n}是首項為3,公差為4的等差數(shù)列,a2n=4n-1,問題得以解決.

解答 解:由題設(shè)2(anan+1+1)=tn(1+an),即anan+1+1=tSn,可得an+1an+2+1=tSn+1,兩式相減得an+1(an+2-an)=tan+1
由an+2-an=t,2(a1a2+1)=t(1+a1
可得a2=t-1,
由an+2-an=t可知a3=t+1,
因為{an}為等差數(shù)列,所以令2a2=a1+a3,
解得t=4,
故an+2-an=4,
由此可得{a2n-1}是首項為1,公差為4的等差數(shù)列,a2n-1=4n-3,
{a2n}是首項為3,公差為4的等差數(shù)列,a2n=4n-1,
所以an=2n-1,
故答案為:2n-1.

點(diǎn)評 本題考查了數(shù)列的通項公式的求法,關(guān)鍵掌握數(shù)列的遞推關(guān)系式,考查了學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義n!=1×2×…×n,下面是求10!的程序,則_____處應(yīng)填的條件是(  )
A.i>10B.i>11C.i<=10D.i<=11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=alnx+$\frac{e}{x}$(e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)a>0時,求函數(shù)f(x)的極值;
(Ⅱ)若不等式f(x)<0在區(qū)間(0,e2]內(nèi)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.曲線x=|y-1|與y=2x-5圍成封閉區(qū)域(含邊界)為Ω,直線y=3x+b與區(qū)域Ω有公共點(diǎn),則b的最小值為(  )
A.1B.-1C.-7D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}&{\;}\\{ax+y≥4}&{\;}\\{x-2y+3≥0}&{\;}\end{array}\right.$,目標(biāo)函數(shù)z=2x-3y的最大值是2,則實(shí)數(shù)a=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\frac{{e}^{x}}{e}$-ax2+(2a-1)x-a,其中e是自然對數(shù)的底數(shù).
(Ⅰ)若a=0,求曲線f(x)在x=1處的切線方程;
(Ⅱ)若當(dāng)x≥1時,f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),則命題P:“?x1,x2∈R,且x1≠x2,|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|<2017”是命題Q:“?x∈R,|f′(x)|<2017”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{log_2}(8-x),x≤0\\ f(x-1),x>0\end{array}$則f(3)=(  )
A.3B.2C.log29D.log27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知過拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),且$\overrightarrow{AF}$=3$\overrightarrow{FB}$,拋物線的準(zhǔn)線l與x軸交于點(diǎn)C,AA1⊥l于點(diǎn)A1,若四邊形AA1CF的面積為12$\sqrt{3}$,則準(zhǔn)線l的方程為(  )
A.x=-$\sqrt{2}$B.x=-2$\sqrt{2}$C.x=-2D.x=-1

查看答案和解析>>

同步練習(xí)冊答案