分析 (1)根據(jù)一元二次方程與對應的不等式的關系,結合根與系數(shù)的關系,求出k的值;
(2)跟你就題意△=4-24k2<0,且k<0,解得即可,
(3)根據(jù)題意,得△≤0且k>0,由此求出k的取值范圍
解答 解:(1)∵不等式kx2-2x+6k<0的解集是{x|x<-3或x>-2},
∴k<0,且-3和-2是方程kx2-2x+6k=0的實數(shù)根,
由根與系數(shù)的關系,得(-3)+(-2)=$\frac{2}{k}$,
∴k=-$\frac{2}{5}$;
(2)不等式的解集是R,
∴△=4-24k2<0,且k<0,
解得k<-$\frac{\sqrt{6}}{6}$,
(3)不等式的解集為∅,得△=4-24k2≤0,且k>0,
解得k≥$\frac{\sqrt{6}}{6}$.
點評 本題考查了一元二次不等式的解法與應用問題,也考查了利用基本不等式求函數(shù)最值的問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com